Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiol Young ; : 1-7, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864576

RESUMO

BACKGROUND: Congenitally corrected transposition of the great arteries is a complex pathology characterised by atrioventricular and ventriculo-arterial discordance. Optimal surgical approaches are still a matter of debate. OBJECTIVE: To evaluate the outcomes of different surgical treatments in a single centre. METHODS: Between 1998 and 2020, 89 patients were studied. The cohort was divided into three groups: physiologic, anatomic, and univentricular repair. RESULT: Physiologic correction (56.18%) was associated with significant tricuspid valve regurgitation progress (42%) and complete AV block (30%) compared to anatomic repair. Right ventricular systolic dysfunction was developed in 14%. Instead, anatomic correction (30.34%) (double switch 59% and Rastelli type 40.7%) presented moderate to severe aortic regurgitation (4%) and left ventricular systolic dysfunction (11%). Complete AV block was developed in 14.8%. Rate of reintervention was 34% for physiologic and 26% for anatomic. Univentricular palliation (13.8%) presented no complications or late mortality during the follow-up. The overall survival at 5 and 10 years, respectively, was 80% (95% CI 69, 87) and 75% (95% CI 62, 84). There was no statistically significant difference in mortality between the groups (p log-rank = 0.5752). CONCLUSION: Management of congenitally corrected transposition of the great arteries remains a challenge. In this cohort, outcomes after physiologic repair were satisfactory in spite of the progression of tricuspid regurgitation and the high incidence of AV block. Anatomic repair improved tricuspid regurgitation but increased the risk of aortic regurgitation and left ventricular systolic dysfunction. The Fontan group showed the lowest incidence of complications.

2.
J Allergy Clin Immunol ; 139(6): 1861-1872.e7, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27931974

RESUMO

BACKGROUND: The skin barrier acts as the first line of defense against constant exposure to biological, microbial, physical, and chemical environmental stressors. Dynamic interplay between defects in the skin barrier, dysfunctional immune responses, and environmental stressors are major factors in the development of atopic dermatitis (AD). A systems biology modeling approach can yield significant insights into these complex and dynamic processes through integration of prior biological data. OBJECTIVE: We sought to develop a multiscale mathematical model of AD pathogenesis that describes the dynamic interplay between the skin barrier, environmental stress, and immune dysregulation and use it to achieve a coherent mechanistic understanding of the onset, progression, and prevention of AD. METHODS: We mathematically investigated synergistic effects of known genetic and environmental risk factors on the dynamic onset and progression of the AD phenotype, from a mostly asymptomatic mild phenotype to a severe treatment-resistant form. RESULTS: Our model analysis identified a "double switch," with 2 concatenated bistable switches, as a key network motif that dictates AD pathogenesis: the first switch is responsible for the reversible onset of inflammation, and the second switch is triggered by long-lasting or frequent activation of the first switch, causing irreversible onset of systemic TH2 sensitization and worsening of AD symptoms. CONCLUSIONS: Our mathematical analysis of the bistable switch predicts that genetic risk factors decrease the threshold of environmental stressors to trigger systemic TH2 sensitization. This analysis predicts and explains 4 common clinical AD phenotypes from a mild and reversible phenotype through to severe and recalcitrant disease and provides a mechanistic explanation for clinically demonstrated preventive effects of emollient treatments against development of AD.


Assuntos
Dermatite Atópica/etiologia , Modelos Biológicos , Alérgenos/imunologia , Animais , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dermatite Atópica/prevenção & controle , Emolientes/uso terapêutico , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Lipopolissacarídeos , Camundongos Knockout , Ovalbumina/imunologia , Fenótipo , Fatores de Risco , Fator de Transcrição STAT3/genética , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA