RESUMO
Quorum sensing (QS) is a bacterial cell-cell communication system with genetically regulated mechanisms dependent on cell density. Canonical QS systems in gram-negative bacteria possess an autoinducer synthase (LuxI family) and a transcriptional regulator (LuxR family) that respond to an autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional regulators "solo" (not associated with a LuxI homolog) may play key roles in intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium that promotes plant growth by emitting the volatile organic compound N, N-dimethylhexadecylamine (DMHDA). This compound induces iron deficiency, defense responses in plants, and swarming motility in Arthrobacter sp. UMCV2. In this study, the draft genome of this bacterium was assembled and compared with the genomes of type strains of the Arthrobacter genus, finding that it does not belong to any previously described species. Genome explorations also revealed the presence of 16 luxR-related genes, but no luxI homologs were discovered. Eleven of these sequences possess the LuxR characteristic DNA-binding domain with a helix-turn-helix motif and were designated as auto-inducer-related regulators (AirR). Four sequences possessed LuxR analogous domains and were designated as auto-inducer analogous regulators (AiaR). When swarming motility was induced with DMHDA, eight airR genes and two aiaR genes were upregulated. These results indicate that the expression of multiple luxR-related genes is induced in actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial biocompound DMHDA when QS behavior is produced.
RESUMO
The one-domain approach (ODA) was used as an alternative to solve fluid-biofilm interfacial behavior in a 2-D model for diffusion-reaction-convection coupled with prediction of irregular growth of biofilms via a cellular automaton strategy. The simulations exhibited errors of <7% compared with the porosity of a previously reported capillary experimental system. Additionally, biofilm surface geometrical aspects were satisfactorily compared with reports of experimental and similar rigorously simulated benchmark systems. The method developed was applied to simulate typical biofilm systems predicting recirculation flow patterns, interface concentration profiles, and clogging of the inlet section of the capillary tube, which are phenomena that affect the efficiency of diverse biotechnological applications, including membrane bioreactors and biofilters. The ODA method applied to the governing equations of momentum and mass transfer combined with a cellular automaton algorithm is a suitable and straightforward approach for modeling solid-state fermentation at different sophistication levels.