Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Comput Biol ; 31(6): 475-485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38775777

RESUMO

The Discretizable Molecular Distance Geometry Problem (DMDGP) plays a key role in the construction of three-dimensional molecular structures from interatomic distances acquired through nuclear magnetic resonance (NMR) spectroscopy, with the primary objective of validating a sequence of distance constraints related to NMR data. This article addresses the escalating complexity of the DMDGP encountered with larger and more flexible molecules by introducing a novel strategy via the Molecular Ordered Covering Problem, which optimizes the ordering of distance constraints to improve computational efficiency in DMDGP resolution. This approach utilizes a specialized Branch-and-Bound (BB) algorithm, tested on both synthetic and actual protein structures from the protein data bank. Our analysis demonstrates the efficacy of the previously proposed greedy heuristic in managing complex molecular scenarios, highlighting the BB algorithm's utility as a validation mechanism. This research contributes to ongoing efforts in molecular structure analysis, with possible implications for areas such as protein folding, drug design, and molecular modeling.

2.
J Comput Chem ; 43(5): 349-358, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34904248

RESUMO

Due to the role of loops in protein function, loop modeling is an important problem in computational biology. We present a new approach to loop modeling based on a combinatorial version of distance geometry, where the search space of the associated problem is represented by a binary tree and a branch-and-prune method is defined to explore it, following an atomic ordering previously given. This ordering is used to calculate the coordinates of atoms from the positions of its predecessors. In addition to the theoretical development, computational results are presented to illustrate the advantage of the proposed method, compared with another approach of the literature. Our algorithm is freely available at https://github.com/michaelsouza/bpl.


Assuntos
Proteínas/química , Algoritmos , Biologia Computacional , Modelos Moleculares , Conformação Proteica
3.
Discrete Appl Math ; 256: 91-104, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30799888

RESUMO

Nuclear Magnetic Resonance (NMR) experiments provide distances between nearby atoms of a protein molecule. The corresponding structure determination problem is to determine the 3D protein structure by exploiting such distances. We present a new order on the atoms of the protein, based on information from the chemistry of proteins and NMR experiments, which allows us to formulate the problem as a combinatorial search. Additionally, this order tells us what kind of NMR distance information is crucial to understand the cardinality of the solution set of the problem and its computational complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA