Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(13): 37174-37184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571691

RESUMO

Understanding the seasonal patterns and influencing factors of nitrogen atmospheric deposition is essential to evaluate human impacts on the air quality and nitrogen biogeochemical cycle. However, evaluation of the nitrogen deposition flux, especially in South America agricultural regions, has not been fully investigated. In this paper, we quantified the atmospheric wet deposition fluxes of total dissolved nitrogen (TDN), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN), in a region with agricultural and livestock predominance in the Southern Minas Gerais region, Brazil, from May 2018 to April 2019. Deposition fluxes of nitrogen species in the wet season (October-March) were on average 4.8-fold higher than those in the dry season, which revealed significant seasonal variations driven largely by the seasonality of rainfall and agricultural operations. We also found high NO3-/NH4+ ratios (average = 8.25), with higher values in dry season (NO3-/NH4+ = 12.8) in comparison with wet season (NO3-/NH4+ = 4.48), which revealed a higher relative contribution of NOx emissions from traffic sources in dry season. We also estimated the influence of atmospheric deposition of inorganic nitrogen (N-DIN) on environmental ecosystems, being 2.01 kgNha-1 year-1 with potential risk of acidification and eutrophication of 30%. Therefore, attention should be paid to the role of wet atmospheric deposition of nitrogen as a source of nitrogen environmental pollution in agricultural regions.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Nitrogênio , Humanos , Poluentes Atmosféricos/análise , Brasil , Ecossistema , Nitrogênio/análise , Estações do Ano
2.
Ecol Appl ; 29(2): e01839, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578700

RESUMO

Nutrient inputs to surface waters are particularly varied in urban areas, due to multiple nutrient sources and complex hydrologic pathways. Because of their close proximity to coastal waters, nutrient delivery from many urban areas can have profound impacts on coastal ecology. Relatively little is known about the temporal and spatial variability in stoichiometry of inorganic nutrients such as dissolved silica, nitrogen, and phosphorus (Si, N, and P) and dissolved organic matter in tropical urban environments. We examined nutrient stoichiometry of both inorganic nutrients and organic matter in an urban watershed in Puerto Rico served by municipal sanitary sewers and compared it to two nearby forested catchments using samples collected weekly from each river for 6 yr. Urbanization caused large increases in the concentration and flux of nitrogen and phosphorus (2- to 50-fold), but surprisingly little change in N:P ratio. Concentrations of almost all major ions and dissolved silica were also significantly higher in the urban river than the wildland rivers. Yield of dissolved organic carbon (DOC) was not increased dramatically by urbanization, but the composition of dissolved organic matter shifted toward N-rich material, with a larger increase in dissolved organic nitrogen (DON) than DOC. The molar ratio of DOC:DON was about 40 in rivers draining forested catchments but was only 10 in the urban river. Inclusion of Si in the assessment of urbanization's impacts reveals a large shift in the stoichiometry (Si:N and Si:P) of nutrient inputs. Because both Si concentrations and watershed exports are high in streams and rivers from many humid tropical catchments with siliceous bedrock, even the large increases in N and P exported from urban catchments result in delivery of Si, N, and P to coastal waters in stoichiometric ratios that are well in excess of the Si requirements of marine diatoms. Our data suggest that dissolved Si, often neglected in watershed biogeochemistry, should be included in studies of urban as well as less developed watersheds due to its potential significance for marine and lacustrine productivity.


Assuntos
Nutrientes , Rios , Monitoramento Ambiental , Nitrogênio , Porto Rico
3.
Sci Total Environ ; 630: 126-140, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477110

RESUMO

We review data from coastal Pacific Panama and other tropical coasts with two aims. First, we defined inputs and losses of nitrogen (N) mediating connectivity of watersheds, mangrove estuaries, and coastal sea. N entering watersheds-mainly via N fixation (79-86%)-was largely intercepted; N discharges to mangrove estuaries (3-6%), small compared to N inputs to watersheds, nonetheless significantly supplied N to mangrove estuaries. Inputs to mangrove estuaries (including watershed discharges, and marine inputs during flood tides) were matched by losses (mainly denitrification and export during ebb tides). Mangrove estuary subsidies of coastal marine food webs take place by export of forms of N [DON (62.5%), PN (9.1%), and litter N (12.9%)] that provide dissimilative and assimilative subsidies. N fixation, denitrification, and tidal exchanges were major processes, and DON was major form of N involved in connecting fluxes in and out of mangrove estuaries. Second, we assessed effects of watershed forest cover on connectivity. Decreased watershed forest cover lowered N inputs, interception, and discharge into receiving mangrove estuaries. These imprints of forest cover were erased during transit of N through estuaries, owing to internal N cycle transformations, and differences in relative area of watersheds and estuaries. Largest losses of N consisted of water transport of energy-rich compounds, particularly DON. N losses were similar in magnitude to N inputs from sea, calculated without considering contribution by intermittent coastal upwelling, and hence likely under-estimated. Pacific Panama mangrove estuaries are exposed to major inputs of N from land and sea, which emphasizes the high degree of bi-directional connectivity in these coupled ecosystems. Pacific Panama is still lightly affected by human or global changes. Increased deforestation can be expected, as well as changes in ENSO, which will surely raise watershed-derived loads of N, as well as significantly change marine N inputs affecting coastal coupled ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA