Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612178

RESUMO

Advances in high-pressure grinding roll (HGPR) technology since its first commercial application in the cement industry include new roll wear protection techniques and new confinement systems. The latter contribute to reductions in the edge effects in an attempt to reach a more homogenous product size along the rolls. Additional advances in this technology have been made in recent years, while modeling and simulation tools are also reaching maturity and can now be used to subject such novel developments to detailed scrutiny. This work applies a hybrid approach combining advanced simulations using the discrete element method, the particle replacement model and multibody dynamics to a phenomenological population balance model to critically assess two recent advances in HPGR technology: spring-loaded cheek plates and the offset roller press. Force and torque controllers, included in the EDEM 2022.1 software, were used to describe the responses of the geometries in contact with the granular material processed. Simulations showed that while the former successfully reduced the lateral bypass of the material by as much as 65% when cheek plates became severely worn, the latter demonstrated lower throughput and higher potential wear but an ability to generate a finer product than the traditional design.

2.
Eur J Pharm Sci ; 175: 106226, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643378

RESUMO

Capsule-based, single-dose dry powder inhalers (DPIs) are commonly-used devices to deliver medications to the lungs. This work evaluates the effect of the drug/excipient adhesive bonding and the DPI resistances on the aerosol performance using a combination of empirical multi-stage impactor data and a fully-coupled computational fluid dynamics (CFD) and discrete element method (DEM) model. Model-predicted quantities show that the primary modes of powder dispersion are a function of the device resistance. Lowering the device resistance increases its capacity to transport a wider range of particle size classes toward the outlet and generate more intense turbulence upstream therein. On the other hand, a higher device resistance increases the velocity of the tangential airflow along the device walls, which in turn increases the intensity of particle/device impaction. Correlating model data and experimental results shows that these differing powder dispersion mechanisms affect different formulations differently, with finer aerosols tending to result when pairing a lower resistance device with formulations that exhibit low API/excipient adhesion, or when pairing a high resistance device with more cohesive formulations.


Assuntos
Inaladores de Pó Seco , Hidrodinâmica , Administração por Inalação , Aerossóis , Desenho de Equipamento , Excipientes , Tamanho da Partícula , Pós
3.
Heliyon ; 6(10): e05155, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33088944

RESUMO

There are a wide variety of devices behaving essentially as flexible and elastic systems while interacting dynamically with fluids, usually water or air, under normal operating conditions. Interactions of this kind involve a double complexity of the dynamics, as the systems go through large deformation due to the flow actions, and simultaneously, the flow dynamics is strongly influenced by the shape adopted by the systems. The present research adapts mathematical methods, still new to the field, to represent ways of dealing with flows of fluid in bidirectional interactions with those new technologies, and particularly applies them to the exploration of vorticity wind turbines (VWT), a new kind of vertical blade-less turbine that gathers energy from the vortex induced vibrations (VIV) of a relatively short and scalable mast. This research presents a framework for such modeling by coupling the discrete element method (DEM) with the Immersed Boundary Method (IBM), for the representation of VWT; and with the finite volume method (FVM), for solving the Navier-Stokes equations. Simulations show that the VWT achieves the lock-in effect for wind velocities between 9 and 15 m/s, with efficiency values between 20 and 30%. The preliminary results together with logistic and cost-related reasons, make these devices very promising, especially when considering the difficulties of implementing new approaches in developing countries.

4.
Environ Sci Pollut Res Int ; 26(3): 2547-2558, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30474809

RESUMO

Environmental pollution analysis should be present in scientific research. The more organized the environmental laws of a particular place, the smaller the risks imputed to the ecosystem. The environmental damages that irregular waste from industrial effluents can cause are notorious. However, Brazil lacks extensive legal regulation, which is an embryonic legal matter. There is no specific law regulating a National Industrial Effluent Policy, dealing with the treatment and final disposal of these chemical compounds. Until a solid legal structure has been formalized on the treatment and final disposal of industrial effluents in Brazil, it is necessary that scientific researches optimize techniques capable of causing lower environmental impacts, so as to avoid possible pollution to the bodies of water. This article defends the argument that it is possible to elaborate legislation on the treatment and final disposal of industrial effluents in Brazil, through the application of engineering techniques, specifically through numerical simulation, by using the discrete elements method or particles method. The present case study is the Camaçari Petrochemical Pole, state of Bahia, which is the largest integrated industrial complex in the Southern Hemisphere, composed of more than 90 companies in the chemical and petrochemical areas. All the effluents from this locality are treated by CETREL (Liquid Effluent Treatment Plant). Particle analysis was performed in CETREL tanks to illustrate how numerical simulations can be applied to investigate the treatment of industrial effluents and, consequently, to affirm the importance of developing procedures and norms for this matter. It is believed that this article brings relevant information to support a future law that regulates a Brazilian National Policy of Industrial Effluents.


Assuntos
Eliminação de Resíduos Líquidos/legislação & jurisprudência , Poluentes Químicos da Água/análise , Brasil , Ecossistema , Resíduos Industriais/análise , Resíduos Industriais/legislação & jurisprudência , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA