RESUMO
Elevation mapping at ground level is challenging in forested areas like the Amazon region, which is mostly covered by dense rainforest. The most common techniques, i.e. photogrammetry and short wavelength radar, provide elevations at canopy level at best, while most applications require ground elevations. Even lidar and P-band radar, which can penetrate foliage and measure elevations at ground level, have some limitations which are analyzed in here. We address three research questions: To what extent can a terrain model be replaced by a more easily available canopy-level surface model for topography-based applications? How can the elevation be obtained at ground level through forest? Can a priori knowledge of general continental relief properties be used to compensate for the limits of measurement methods in the presence of forest?(AU)
O mapeamento da elevação ao nível do solo é um desafio em áreas florestadas como a região amazônica, coberta principalmente por floresta tropical densa. As técnicas mais comuns, i.e., a fotogrametria e o radar de comprimento de onda curto, fornecem elevações ao nível do dossel na melhor das hipóteses, enquanto a maioria das aplicações requer a elevação do solo. Mesmo o lidar e o radar de banda P, que podem penetrar a folhagem e medir elevações ao nível do solo, têm algumas limitações que são analisadas aqui. Abordamos três questões: Até que ponto um modelo de terreno pode ser substituído por um modelo de superfície ao nível do dossel, mais facilmente disponível, para aplicações baseadas na topografia? Como a elevação ao nível do solo pode ser obtida através da floresta? O conhecimento a priori das propriedades gerais do relevo continental pode ser usado para compensar os limites dos métodos de medição na presença de floresta?(AU)
Assuntos
Análise do Solo , Ecossistema Amazônico , Mapeamento Geográfico , Brasil , Fotogrametria/métodos , FlorestasRESUMO
Remote sensing is revolutionizing the way in which forests studies are conducted, and recent technological advances, such as Structure from Motion (SfM) photogrammetry from Unmanned Aerial Vehicle (UAV), are providing more efficient methods to assist in REDD (Reducing Emissions from Deforestation and forest Degradation) monitoring and forest sustainable management. The aim of this work was to develop and test a methodology based on SfM from UAV to generate high quality Digital Terrain Models (DTMs) on teak plantations (Tectona grandis Linn. F.) situated in the Coastal Region of Ecuador (dry tropical forest). UAV overlapping images were collected using a DJI Phantom 4 Advanced© quadcopter during the dry season (leaf-off phenological stage) over 58 teak square plots of 36 m side belonging to three different plantations located in the province of Guayas (Ecuador). A workflow consisting of SfM absolute image alignment based on field surveyed ground control points, very dense point cloud generation, ground points filtering and outlier removal, and DTM interpolation from labeled ground points, was accomplished. A very accurate Terrestrial Laser Scanning (TLS) derived ground points were employed as ground reference to estimate the UAV-SfM DTM vertical error in each reference plot. The plot-level obtained DTMs presented low vertical bias and random error (-3.1 cm and 11.9 cm on average, respectively), showing statistically significant greater error in those reference plots with basal area and estimated vegetation coverage above 15 m2/ha and 60%, respectively. To the best of the authors' knowledge, this is the first study aimed at monitoring of teak plantations located in dry tropical forests from UAV images. It provides valuable information that recommends carrying out the UAV image capture during the leaf-off season to obtain UAV-SfM derived DTMs suitable to serve as ground reference in supporting teak plantations inventories.
Assuntos
Monitoramento Ambiental/métodos , Florestas , Tecnologia de Sensoriamento Remoto/métodos , Conservação dos Recursos Naturais , EquadorRESUMO
Great Bahama Bank (GBB) is the principal location of the formation and accumulation of ooids (concentrically coated, sand-size carbonate grains) in the world today, and as such has been the focus of studies on all aspects of ooids for more than half a century. Our view from a close look at this vast body of literature coupled with our continuing interests stresses that biological mechanisms (microbially mediated organomineralization) are very important in the formation of ooids, whereas the controlling factor for the distribution and size of ooid sand bodies is the physical energy. Mapping and coring studies of the modern ooid sand bodies on GBB provide insight into the rock record from different perspectives. An important consequence of the dual influence of ooid formation and distribution is that the geochemical signature of ooids is not in equilibrium with the seawater in which ooids form; therefore, extracting the paleophysical energy record from oolitic deposits is potentially more accurate than doing so for the paleochemical record.
Assuntos
Carbonatos/análise , Sedimentos Geológicos/química , Modelos Teóricos , Água do Mar/análise , Oceano Atlântico , BahamasRESUMO
Very few studies have been devoted to understanding the digital terrain model (DTM) creation for Amazon forests. DTM has a special and important role when airborne laser scanning is used to estimate vegetation biomass. We examined the influence of pulse density, spatial resolution, filter algorithms, vegetation density and slope on the DTM quality. Three Amazonian forested areas were surveyed with airborne laser scanning, and each original point cloud was reduced targeting to 20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses per square meter based on a random resampling process. The DTM from resampled clouds was compared with the reference DTM produced from the original LiDAR data by calculating the deviation pixel by pixel and summarizing it through the root mean square error (RMSE). The DTM from resampled clouds were also evaluated considering the level of agreement with the reference DTM. Our study showed a clear trade-off between the return density and the horizontal resolution. Higher forest canopy density demanded higher return density or lower DTM resolution.
São poucos os estudos dedicados a entender a criação de modelo digital de terreno (MDT) para florestas amazônicas. O MDT tem uma importante função quando o escaneamento laser aerotransportado é usado para estimar a biomassa da vegetação. Examinamos a relação da densidade de pulsos, resolução espacial, algoritmos de filtragem, densidade da vegetação e inclinação do terreno com a qualidade do MDT. Três áreas de floresta amazônica foram sobrevoadas usando LiDAR aerotransportado. Cada nuvem de dados original teve sua densidade reduzida objetivando 20; 15; 10; 8; 6; 4; 2; 1; 0,75; 0,5 e 0,25 pulsos por metro quadrado, utilizando um processo de reamostragem aleatória. Os MDTs das nuvens reamostradas foram comparados com o MDT de referência, produzido a partir da nuvem original, calculando o desvio pixel a pixel e resumindo-o por meio do erro padrão da estimativa (RMSE). Os MDTs das nuvens reamostradas também foram avaliados quanto ao nível de correspondência com o MDT de referência. Houve uma clara compensação entre densidade de pontos e resolução horizontal. Dosséis mais densos exigem uma maior densidade de retornos, ou MDT com menor resolução.
Assuntos
Análise do Solo , Mapeamento Geográfico , Sistemas de Informação Geográfica , Brasil , Ecossistema AmazônicoRESUMO
Very few studies have been devoted to understanding the digital terrain model (DTM) creation for Amazon forests. DTM has a special and important role when airborne laser scanning is used to estimate vegetation biomass. We examined the influence of pulse density, spatial resolution, filter algorithms, vegetation density and slope on the DTM quality. Three Amazonian forested areas were surveyed with airborne laser scanning, and each original point cloud was reduced targeting to 20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses per square meter based on a random resampling process. The DTM from resampled clouds was compared with the reference DTM produced from the original LiDAR data by calculating the deviation pixel by pixel and summarizing it through the root mean square error (RMSE). The DTM from resampled clouds were also evaluated considering the level of agreement with the reference DTM. Our study showed a clear trade-off between the return density and the horizontal resolution. Higher forest canopy density demanded higher return density or lower DTM resolution.(AU)
São poucos os estudos dedicados a entender a criação de modelo digital de terreno (MDT) para florestas amazônicas. O MDT tem uma importante função quando o escaneamento laser aerotransportado é usado para estimar a biomassa da vegetação. Examinamos a relação da densidade de pulsos, resolução espacial, algoritmos de filtragem, densidade da vegetação e inclinação do terreno com a qualidade do MDT. Três áreas de floresta amazônica foram sobrevoadas usando LiDAR aerotransportado. Cada nuvem de dados original teve sua densidade reduzida objetivando 20; 15; 10; 8; 6; 4; 2; 1; 0,75; 0,5 e 0,25 pulsos por metro quadrado, utilizando um processo de reamostragem aleatória. Os MDTs das nuvens reamostradas foram comparados com o MDT de referência, produzido a partir da nuvem original, calculando o desvio pixel a pixel e resumindo-o por meio do erro padrão da estimativa (RMSE). Os MDTs das nuvens reamostradas também foram avaliados quanto ao nível de correspondência com o MDT de referência. Houve uma clara compensação entre densidade de pontos e resolução horizontal. Dosséis mais densos exigem uma maior densidade de retornos, ou MDT com menor resolução.(AU)