RESUMO
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
RESUMO
MAIN CONCLUSION: The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.
Assuntos
Arabidopsis , Botrytis , Hanseniaspora , Ácidos IndolacéticosRESUMO
Plant food production is severely affected by fungi; to cope with this problem, farmers use synthetic fungicides. However, the need to reduce fungicide application has led to a search for alternatives, such as biostimulants. Rare-earth elements (REEs) are widely used as biostimulants, but their mode of action and their potential as an alternative to synthetic fungicides have not been fully studied. Here, the biostimulant effect of gadolinium (Gd) is explored using the plant-pathosystem Arabidopsis thaliana-Botrytis cinerea. We determine that Gd induces local, systemic, and long-lasting plant defense responses to B. cinerea, without affecting fungal development. The physiological changes induced by Gd have been related to its structural resemblance to calcium. However, our results show that the calcium-induced defense response is not sufficient to protect plants against B. cinerea, compared to Gd. Furthermore, a genome-wide transcriptomic analysis shows that Gd induces plant defenses and modifies early and late defense responses. However, the resistance to B. cinerea is dependent on JA/ET-induced responses. These data support the conclusion that Gd can be used as a biocontrol agent for B. cinerea. These results are a valuable tool to uncover the molecular mechanisms induced by REEs.
Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Gadolínio/farmacologia , Oxilipinas/metabolismo , Substâncias Protetoras/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genéticaRESUMO
Orchids form endomycorrhizal associations with fungi mainly belonging to basidiomycetes. The molecular events taking place in orchid mycorrhiza are poorly understood, although the cellular changes necessary to accommodate the fungus and to control nutrient exchanges imply a modulation of gene expression. Here, we used proteomics and transcriptomics to identify changes in the steady-state levels of proteins and transcripts in the roots of the green terrestrial orchid Oeceoclades maculata. When mycorrhizal and non-mycorrhizal roots from the same individuals were compared, 94 proteins showed differential accumulation using the label-free protein quantitation approach, 86 using isobaric tagging and 60 using 2D-differential electrophoresis. After de novo assembly of transcriptomic data, 11,179 plant transcripts were found to be differentially expressed, and 2175 were successfully annotated. The annotated plant transcripts allowed the identification of up- and down-regulated metabolic pathways. Overall, proteomics and transcriptomics revealed, in mycorrhizal roots, increased levels of transcription factors and nutrient transporters, as well as ethylene-related proteins. The expression pattern of proteins and transcripts involved in plant defense responses suggested that plant defense was reduced in O. maculata mycorrhizal roots sampled in nature. These results expand our current knowledge towards a better understanding of the orchid mycorrhizal symbiosis in adult plants under natural conditions.
RESUMO
Chitin is an excellent material for the synthesis of nanoparticles because it is an elicitor and can form nanostructured materials. The application of chitin nanoparticles (CNPs) in plants can activate early defense responses associated with chitin. In this study, CNPs were synthesized by water in oil (W/O) emulsion using an aqueous chitin solution. The CNPs were characterized and used to evaluate the activation of genes related to early responses to chitin and the production of reactive oxygen species (ROS) on seedlings of Nicotiana benthamiana. The CNPs had an average size of 280 nm in diameter, a polydispersity of 0.299, a surface charge of 26.9 mV, and their chemical composition was corroborated by the disappearance of microaggregated CNPs treated with chitinases observed under a microscope. Seedlings treated with CNPs for one hour revealed increments in the expression of genes STZ, ATL2, and MAPK3, in contrast when they were treated with chitin oligomers, and no changes in gene CERK1 was detected in both conditions. Finally, the synthesis of ROS mediated by CNPs was detected in seedlings, which was higher than those generated by the treatment of chitin oligomers. These results demonstrated the capability to generate CNPs by emulsion, which are capable of triggering responses related to early defense in N. benthamiana more efficiently than chitin oligomers.
RESUMO
Fusarium stalk rot (FSR), caused by Fusarium verticillioides, is one of the most destructive diseases impacting maize yield worldwide. In this study, net carbon assimilation rate (A), stomatal conductance to water vapor (gs), transpiration rate (E), and internal CO2 concentration (Ci) were evaluated on leaves and the activities of enzymes (chitinase (CHI), ß-1-3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), polyphenoloxidase (PPO), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POX)) as well the concentrations of total soluble phenolics (TSP), lignin-thioglycolic acid (LTGA) derivatives, and malondialdehyde (MDA) were evaluated in the internodes and nodes of plants from maize hybrids moderately resistant (BRS 1035) and susceptible (30F35Y) to FSR. The upward relative lesion length (URLL) and radial fungal colonization (RFC) were 46 and 29% lower for the BRS 1035 hybrid in comparison to 30F35Y hybrid, respectively, at 30 after inoculation (dai). For both hybrids, A, gs, and E values significantly decreased while the Ci values increased on infected leaves compared to noninoculated plants. Inoculated plants from BRS 1035 hybrid showed an increase in A compared to inoculated plants from 30F35Y hybrid, and the increase in Ci values was greater for plants from 30F35Y hybrid at 30 dai compared to plants from BRS 1035 hybrid. The CHI, GLU, PPO, CAT, APX, and POX activities increased for inoculated plants from both hybrids compared to the noninoculated plants. In the internodes region, the increase in the activities of CHI (during the infection process of F. verticillioides) and GLU (at earlier stages of F. verticillioides infection) was more pronounced for plants from BRS 1035 hybrid than for plants from 30F35Y hybrid. In the region of the nodes, activities of CHI (during the infection process of F. verticillioides), PAL (at 20 dai), PPO (at 30 dai), and CAT and POX (both at three dai) were more pronounced for plants from BRS 1035 hybrid than for plants from 30F35Y hybrid. In the internodes region, the lower TSP concentration at 30 dai was linked to a high concentration of LTGA derivatives for inoculated plants from BRS 1035 hybrid compared to inoculated plants from 30F35Y hybrid. Taking together, the results of the present study allowed to conclude that the infection by F. verticillioides triggered physiological and biochemical changes on the stalk of maize plants influencing photosynthesis on leaves. A more robust antioxidative metabolism for reactive oxygen species removal in association with an efficient and strong activity of defense enzymes helped to minimize the cellular damage caused by F. verticillioides infection resulting, therefore, in an increase in maize resistance to FSR.
RESUMO
MAIN CONCLUSION: DOTAP triggers Arabidopsis thaliana immunity and by priming the defense response is able to reduce bacterial pathogen attack. DOTAP is a cationic lipid widely used as a liposomal transfection reagent and it has recently been identified as a strong activator of the innate immune system in animal cells. Plants are sessile organisms and unlike mammals, that have innate and acquired immunity, plants possess only innate immunity. A key feature of plant immunity is the ability to sense potentially dangerous signals, as it is the case for microbe-associated, pathogen-associated or damage-associated molecular patterns and by doing so, trigger an active defense response to cope with the perturbing stimulus. Here, we evaluated the effect of DOTAP in plant basal innate immunity. An initial plant defense response was induced by the cationic lipid DOTAP in the model plant Arabidopsis thaliana, assessed by callose deposition, reactive oxygen species production, and plant cell death. In addition, a proteomic analysis revealed that these responses are mirrored by changes in the plant proteome, such as up-regulation of proteins related to defense responses, including proteins involved in photorespiration, cysteine and oxylipin synthesis, and oxidative stress response; and down-regulation of enzymes related to photosynthesis. Furthermore, DOTAP was able to prime the defense response for later pathogenic challenges as in the case of the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Disease outcome was diminished in DOTAP-pre-treated leaves and bacterial growth was reduced 100 times compared to mock leaves. Therefore, DOTAP may be considered a good candidate as an elicitor for the study of plant immunity.
Assuntos
Arabidopsis/imunologia , Ácidos Graxos Monoinsaturados/metabolismo , Imunidade Vegetal , Compostos de Amônio Quaternário/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Lipossomos/metabolismo , Fotossíntese , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismoRESUMO
Plant diseases induced by fungi are among the most important limiting factors during pre- and post-harvest food production. For decades, synthetic chemical fungicides have been used to control these diseases, however, increase on worldwide regulatory policies and the demand to reduce their application, have led to searching for new ecofriendly alternatives such as the biostimulants. The commercial application of yeasts as biocontrol agents, has shown low efficacy compared to synthetic fungicides, mostly due to the limited knowledge of the molecular mechanisms of yeast-induced responses. To date, only two genome-wide transcriptomic analyses have characterized the mode of action of biocontrols using the plant model Arabidopsis thaliana, missing, in our point of view, all its molecular and genomic potential. Here we describe that compounds released by the biocontrol yeast Hanseniaspora opuntiae (HoFs) can protect Glycine max and Arabidopsis thaliana plants against the broad host-range necrotrophic fungi Corynespora cassiicola and Botrytis cinerea. We show that HoFs have a long-lasting, dose-dependent local, and systemic effect against Botrytis cinerea. Additionally, we performed a genome-wide transcriptomic analysis to identify genes differentially expressed after application of HoFs in Arabidopsis thaliana. Our work provides novel and valuable information that can help researchers to improve HoFs efficacy in order for it to become an ecofriendly alternative to synthetic fungicides.
RESUMO
KEY MESSAGE: Global gene expression analysis indicates host stress responses, mainly those mediated by SA, associated to the tolerance to sticky disease symptoms at pre-flowering stage in Carica papaya. Carica papaya plants develop the papaya sticky disease (PSD) as a result of the combined infection of papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2), or PMeV complex. PSD symptoms appear only after C. papaya flowers. To understand the mechanisms involved in this phenomenon, the global gene expression patterns of PMeV complex-infected C. papaya at pre-and post-flowering stages were assessed by RNA-Seq. The result was 633 and 88 differentially expressed genes at pre- and post-flowering stages, respectively. At pre-flowering stage, genes related to stress and transport were up-regulated while metabolism-related genes were down-regulated. It was observed that induction of several salicylic acid (SA)-activated genes, including PR1, PR2, PR5, WRKY transcription factors, ROS and callose genes, suggesting SA signaling involvement in the delayed symptoms. In fact, pre-flowering C. papaya treated with exogenous SA showed a tendency to decrease the PMeV and PMeV2 loads when compared to control plants. However, pre-flowering C. papaya also accumulated transcripts encoding a NPR1-inhibitor (NPR1-I/NIM1-I) candidate, genes coding for UDP-glucosyltransferases (UGTs) and several genes involved with ethylene pathway, known to be negative regulators of SA signaling. At post-flowering, when PSD symptoms appeared, the down-regulation of PR-1 encoding gene and the induction of BSMT1 and JA metabolism-related genes were observed. Hence, SA signaling likely operates at the pre-flowering stage of PMeV complex-infected C. papaya inhibiting the development of PSD symptoms, but the induction of its negative regulators prevents the full-scale and long-lasting tolerance.
Assuntos
Carica/genética , Carica/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Carica/efeitos dos fármacos , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/genética , Folhas de Planta/virologia , Vírus de RNA/patogenicidade , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Análise de Sequência de RNARESUMO
This study investigated the effect of silicon (Si) on the potentiation of rice resistance against leaf scald at the microscopic level. Rice plants ('Primavera') were grown in a nutrient solution containing 0 (-Si) or 2 mM (+Si) Si. The foliar Si concentration of the +Si plants (3.6 dag/kg) increased in comparison with the -Si plants (0.3 dag/kg). An X-ray microanalysis revealed that the leaf tissue of +Si plants infected with Microdochium oryzae had higher peaks and deposition of insoluble Si than that of -Si plants. The high foliar Si concentration for the +Si plants reduced the expansion of leaf scald lesions. Scanning electron microscopy revealed that fungal hyphae and appressorium-like structures of M. oryzae were more abundant in the leaf surface of -Si plants relative to +Si plants. At both histopathological and ultrastructural levels, fungal hyphae grew abundantly into the leaf tissue of -Si plants. By contrast, rice cell walls were rarely degraded and fungal hyphae were often surrounded by amorphous granular material in the leaf tissue of +Si plants. Conidiophores emerged from stomata 36 h after fungal penetration, and conidia were noticed inside the leaf tissue of the -Si plants in great abundance. The collective results of the present study showed a high concentration and deposition of Si and a considerable deposition of phenolic-like compounds in the leaf tissue of +Si plants. These results indicate that the potentiation of the phenylpropanoid pathway in these plants supplied with Si was favorable for the increase in rice resistance to leaf scald.
Assuntos
Ascomicetos/fisiologia , Oryza/imunologia , Doenças das Plantas/imunologia , Silício/farmacologia , Ascomicetos/patogenicidade , Parede Celular/metabolismo , Resistência à Doença , Microanálise por Sonda Eletrônica , Hifas , Microscopia Eletrônica de Varredura , Oryza/efeitos dos fármacos , Oryza/microbiologia , Oryza/ultraestrutura , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Estômatos de Plantas/imunologia , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura , Esporos FúngicosRESUMO
The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to ß-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens.
Assuntos
Ascomicetos/patogenicidade , Briófitas/microbiologia , Imunidade Vegetal , Briófitas/imunologia , Parede Celular/metabolismo , Cloroplastos/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Plants interact with the environment by sensing "non-self" molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA), jasmonic acid (JA) and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i) Pathogenesis-Related (PR) proteins with antifungal and antibacterial activities; (ii) defense enzymes such as pheylalanine ammonia lyase (PAL) and lipoxygenase (LOX) which determine accumulation of phenylpropanoid compounds (PPCs) and oxylipins with antiviral, antifugal and antibacterial activities and iii) enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.
Assuntos
Oligossacarídeos/farmacologia , Doenças das Plantas/imunologia , Polissacarídeos/farmacologia , Alga Marinha/química , Alginatos/farmacologia , Carragenina/farmacologia , GlucanosRESUMO
Plant hormones play a crucial role in integrating endogenous and exogenous signals and in determining developmental responses to form the plant body throughout its life cycle. In citrus species, several economically important processes are controlled by phytohormones, including seed germination, secondary growth, fruit abscission and ripening. Integrative genomics is a powerful tool for linking newly researched organisms, such as tropical woody species, to functional studies already carried out on established model organisms. Based on gene orthology analyses and expression patterns, we searched the Citrus Genome Sequencing Consortium (CitEST) database for Expressed Sequence Tags (EST) consensus sequences sharing similarity to known components of hormone metabolism and signaling pathways in model species. More than 600 homologs of functionally characterized hormone metabolism and signal transduction members from model species were identified in citrus, allowing us to propose a framework for phytohormone signaling mechanisms in citrus. A number of components from hormone-related metabolic pathways were absent in citrus, suggesting the presence of distinct metabolic pathways. Our results demonstrated the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.