Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(11)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517363

RESUMO

This article describes the use of ß-cyclodextrin-based carbonate nanosponges (NSs) decorated with superparamagnetic Fe3O4 nanoparticles to study and investigate the potential removal of dinotefuran (DTF) from wastewater. The NS-DTF inclusion compound was characterized by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), UV-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD) and proton nuclear magnetic resonance (1H-NMR). The adsorption efficiency of NSs was evaluated as function of different contact times. The results confirmed that the NSs have a favourable sorption capacity for the chosen guest, as the polymers exhibited a maximum adsorption of 4.53 × 10-3 mmol/g for DTF. We also found that magnetic NSs show good reusability as they maintain their efficiency after eight adsorption and desorption cycles. Our studies and characterization by means of SEM, TEM, EDS, vibrating sample magnetometer (VSM) and UV-VIS also show that NSs with magnetic properties are excellent tools for insecticide removal from aqueous environments.


Assuntos
Guanidinas/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Neonicotinoides/química , Nitrocompostos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , beta-Ciclodextrinas/química , Adsorção , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Nanopartículas de Magnetita/ultraestrutura , Estrutura Molecular , Nanocompostos/ultraestrutura
2.
Polymers (Basel) ; 10(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30960963

RESUMO

This article describes the sorption properties of cyclodextrin polymers (nanosponges; NS) with the pesticides 4-chlorophenoxyacetic acid (4-CPA) and 2,3,4,6-tetrachlorophenol (TCF), including an evaluation of its efficiency and a comparison with other materials, such as granulated activated carbon (GAC). NS-pesticide complexes were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray powder diffraction (XRPD), proton nuclear magnetic resonance (¹H-NMR), UV⁻VIS, and thermogravimetric analysis (TGA). This confirms the interactions of the guests with nanosponges and shows that the polymers have favorable sorption capacities for chlorinated aromatic guests. Our studies also show that the inclusion complex is predominantly favored for NS/CPA rather than those formed between TCF and NS due to the size of the adsorbate and steric effects. Sorption studies carried with repeated cycles demonstrate that NS polymers could be an improved technology for pollutant removal from aquatic environments, as they are very efficient and reusable materials. Our experiments and characterization by SEM, EDS, UV⁻VIS, and magnetization saturation (VSM) also show that NS is an optimal substrate for the deposition of magnetite nanoparticles, thus improving the usefulness and properties of the polymer, as the nanosponges could be retrieved from aqueous solution with a neodymium magnet without losing its efficiency as a pesticide sorbent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA