Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835104

RESUMO

Herein, we describe the synthesis and evaluation of anti-inflammatory activities of new curcumin derivatives. The thirteen curcumin derivatives were synthesized by Steglich esterification on one or both of the phenolic rings of curcumin with the aim of providing improved anti-inflammatory activity. Monofunctionalized compounds showed better bioactivity than the difunctionalized derivatives in terms of inhibiting IL-6 production, and known compound 2 presented the highest activity. Additionally, this compound showed strong activity against PGE2. Structure-activity relationship studies were carried out for both IL-6 and PGE2, and it was found that the activity of this series of compounds increases when a free hydroxyl group or aromatic ligands are present on the curcumin ring and a linker moiety is absent. Compound 2 remained the highest activity in modulating IL-6 production and showed strong activity against PGE2 synthesis.


Assuntos
Anti-Inflamatórios , Curcumina , Polifenóis , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Interleucina-6 , Polifenóis/química , Relação Estrutura-Atividade
2.
J Alzheimers Dis ; 82(s1): S321-S333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33337368

RESUMO

BACKGROUND: The most important hallmark in the neuropathology of Alzheimer's disease (AD) is the formation of amyloid-ß (Aß) fibrils due to the misfolding/aggregation of the Aß peptide. Preventing or reverting the aggregation process has been an active area of research. Naturally occurring products are a potential source of molecules that may be able to inhibit Aß42 peptide aggregation. Recently, we and others reported the anti-aggregating properties of curcumin and some of its derivatives in vitro, presenting an important therapeutic avenue by enhancing these properties. OBJECTIVE: To computationally assess the interaction between Aß peptide and a set of curcumin derivatives previously explored in experimental assays. METHODS: The interactions of ten ligands with Aß monomers were studied by combining molecular dynamics and molecular docking simulations. We present the in silico evaluation of the interaction between these derivatives and the Aß42 peptide, both in the monomeric and fibril forms. RESULTS: The results show that a single substitution in curcumin could significantly enhance the interaction between the derivatives and the Aß42 monomers when compared to a double substitution. In addition, the molecular docking simulations showed that the interaction between the curcumin derivatives and the Aß42 monomers occur in a region critical for peptide aggregation. CONCLUSION: Results showed that a single substitution in curcumin improved the interaction of the ligands with the Aß monomer more so than a double substitution. Our molecular docking studies thus provide important insights for further developing/validating novel curcumin-derived molecules with high therapeutic potential for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Simulação por Computador , Curcumina/metabolismo , Simulação de Acoplamento Molecular/métodos , Amiloide/química , Peptídeos beta-Amiloides/química , Curcumina/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
3.
J Alzheimers Dis ; 60(s1): S59-S68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453488

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Brain inflammation plays a key role in the progression of AD. Deposition of senile plaques in the brain stimulates an inflammatory response with the overexpression of pro-inflammatory mediators, such as the neuroinflammatory cytokine. interleukin-6. Curcumin has been revealed to be a potential agent for treating AD following different neuroprotective mechanisms, such as inhibition of aggregation and decrease in brain inflammation. We synthesized new curcumin derivatives with the aim of providing good anti-aggregation capacity but also improved anti-inflammatory activity. Nine curcumin derivatives were synthesized by etherification and esterification of the aromatic region. From these derivatives, compound 8 exhibited an anti-inflammatory effect similar to curcumin, while compounds 3, 4, and 10 were more potent. Moreover, when the anti-aggregation activity is considered, compounds 3, 4, 5, 6, and 10 showed biological activity in vitro. Compound 4 exhibited a strong anti-aggregation effect higher than curcumin. Monofunctionalized curcumin derivatives showed better bioactivity than difunctionalized compounds. Moreover, the presence of bulky groups in the chemical structure of curcumin derivatives decreased bioactivity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/farmacologia , Curcumina/síntese química , Curcumina/farmacologia , Citocinas/metabolismo , Animais , Anti-Inflamatórios/química , Células Cultivadas , Curcumina/química , Ciclo-Oxigenase 1/metabolismo , Relação Dose-Resposta a Droga , Feminino , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo , Agregados Proteicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA