RESUMO
Chlorophyll is a commercially important natural green pigment responsible for the absorption of light energy and its conversion into chemical energy via photosynthesis in plants and algae. This bioactive compound is widely used in the food, cosmetic, and pharmaceutical industries. Chlorophyll has been consumed for health benefits as a nutraceutical agent with antioxidant, anti-inflammatory, antimutagenic, and antimicrobial properties. Microalgae are photosynthesizing microorganisms which can be extracted for several high-value bioproducts in the biotechnology industry. These microorganisms are highly efficient at adapting to physicochemical variations in the local environment. This allows optimization of culture conditions for inducing microalgal growth and biomass production as well as for changing their biochemical composition. The modulation of microalgal culture under controlled conditions has been proposed to maximize chlorophyll accumulation. Strategies reported in the literature to promote the chlorophyll content in microalgae include variation in light intensity, culture agitation, and changes in temperature and nutrient availability. These factors affect chlorophyll concentration in a species-specific manner; therefore, optimization of culture conditions has become an essential requirement. This paper provides an overview of the current knowledge on the effects of key environmental factors on microalgal chlorophyll accumulation, focusing on small-scale laboratory experiments.
Assuntos
Clorofila/biossíntese , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biomassa , Biotecnologia , Luz , Fotossíntese , TemperaturaRESUMO
A hiperidricidade, anteriormente chamada vitrificação, é considerada uma desordem fisiológica, bioquímica e morfológica decorrente do acúmulo anormal de água no interior das células e tecidos. As plantas cultivadas in vitro estão, indubitavelmente, sob contínua condição de estresse, os quais resultam em alterações metabólicas características do estresse oxidativo. Anatomicamente, plantas ou brotos afetados frequentemente apresentam-se inchados, com coloração verde claro, folhas translúcidas e com aparência de vidro, baixa relação número de células/área celular e hipolignificação. Alterações fisiológicas que ocorrem nas principais vias metabólicas, incluindo fotossíntese, respiração e transpiração, resultam em redução de eficiência dessas vias metabólicas. Os distúrbios morfológicos, fisiológicos e bioquímicos são desencadeados por fatores físicos, relacionados ao ambiente dos recipientes de cultivo e consistência do meio de cultura ou por fatores químicos como os componentes do meio de cultura, em especial dos reguladores de crescimento em altas concentrações. A hiperidricidade ocorre em vários níveis de severidade, chegando a resultar na perda irreversível da capacidade morfogênica e o estabelecimento de um estado neoplásico das células, no entanto, na maioria dos casos, a hiperidricidade é considerada reversível. Esta revisão foca o conhecimento atual sobre o fenômeno da hiperidricidade abordando aspectos morfológicos, fisiológicos, bioquímicos e a reversibilidade do processo.
The hyperhydricity, formerly called vitrification, is considered a physiological, biochemistry and morfologic disorder due to abnormal accumulation of water inside the cells and tissues. Plants grown in vitro are undoubtedly under continuous stress condition which results in metabolic changes characteristic of oxidative stress. Anatomically plants or shoots affected often become swollen, with pale green, translucent sheets, glass-like, low relative number of cells / cell area and hipolignification. Physiological changes occur in major metabolic pathways including photosynthesis, respiration and transpiration resulting in reduced efficiency of these metabolic pathways. Morphological, physiological and biochemical disorders are triggered by physical factors related to the environment of cultivation vessels and consistency of the culture medium or by chemical factors such as culture medium components, especially the growth regulators in high concentrations. The hyperhydricity occurs at various levels of severity, reaching result in irreversible loss of morphogenic capacity and the establishment of a state of neoplastic cells, however, in most cases hyperhydricity is considered reversible. This review focuses on the current knowledge about the phenomenon of hyperhydricity addressing morphological, physiological, biochemical, and reversibility of the process.
RESUMO
The hyperhydricity, formerly called vitrification, is considered a physiological, biochemistry and morfologic disorder due to abnormal accumulation of water inside the cells and tissues. Plants grown in vitro are undoubtedly under continuous stress condition which results in metabolic changes characteristic of oxidative stress. Anatomically plants or shoots affected often become swollen, with pale green, translucent sheets, glass-like, low relative number of cells / cell area and hipolignification. Physiological changes occur in major metabolic pathways including photosynthesis, respiration and transpiration resulting in reduced efficiency of these metabolic pathways. Morphological, physiological and biochemical disorders are triggered by physical factors related to the environment of cultivation vessels and consistency of the culture medium or by chemical factors such as culture medium components, especially the growth regulators in high concentrations. The hyperhydricity occurs at various levels of severity, reaching result in irreversible loss of morphogenic capacity and the establishment of a state of neoplastic cells, however, in most cases hyperhydricity is considered reversible. This review focuses on the current knowledge about the phenomenon of hyperhydricity addressing morphological, physiological, biochemical, and reversibility of the process.
A hiperidricidade, anteriormente chamada vitrificação, é considerada uma desordem fisiológica, bioquímica e morfológica decorrente do acúmulo anormal de água no interior das células e tecidos. As plantas cultivadas in vitro estão, indubitavelmente, sob contínua condição de estresse, os quais resultam em alterações metabólicas características do estresse oxidativo. Anatomicamente, plantas ou brotos afetados frequentemente apresentam-se inchados, com coloração verde claro, folhas translúcidas e com aparência de vidro, baixa relação número de células/área celular e hipolignificação. Alterações fisiológicas que ocorrem nas principais vias metabólicas, incluindo fotossíntese, respiração e transpiração, resultam em redução de eficiência dessas vias metabólicas. Os distúrbios morfológicos, fisiológicos e bioquímicos são desencadeados por fatores físicos, relacionados ao ambiente dos recipientes de cultivo e consistência do meio de cultura ou por fatores químicos como os componentes do meio de cultura, em especial dos reguladores de crescimento em altas concentrações. A hiperidricidade ocorre em vários níveis de severidade, chegando a resultar na perda irreversível da capacidade morfogênica e o estabelecimento de um estado neoplásico das células, no entanto, na maioria dos casos, a hiperidricidade é considerada reversível. Esta revisão foca o conhecimento atual sobre o fenômeno da hiperidricidade abordando aspectos morfológicos, fisiológicos, bioquímicos e a reversibilidade do processo.
RESUMO
The hyperhydricity, formerly called vitrification, is considered a physiological, biochemistry and morfologic disorder due to abnormal accumulation of water inside the cells and tissues. Plants grown in vitro are undoubtedly under continuous stress condition which results in metabolic changes characteristic of oxidative stress. Anatomically plants or shoots affected often become swollen, with pale green, translucent sheets, glass-like, low relative number of cells / cell area and hipolignification. Physiological changes occur in major metabolic pathways including photosynthesis, respiration and transpiration resulting in reduced efficiency of these metabolic pathways. Morphological, physiological and biochemical disorders are triggered by physical factors related to the environment of cultivation vessels and consistency of the culture medium or by chemical factors such as culture medium components, especially the growth regulators in high concentrations. The hyperhydricity occurs at various levels of severity, reaching result in irreversible loss of morphogenic capacity and the establishment of a state of neoplastic cells, however, in most cases hyperhydricity is considered reversible. This review focuses on the current knowledge about the phenomenon of hyperhydricity addressing morphological, physiological, biochemical, and reversibility of the process.
A hiperidricidade, anteriormente chamada vitrificação, é considerada uma desordem fisiológica, bioquímica e morfológica decorrente do acúmulo anormal de água no interior das células e tecidos. As plantas cultivadas in vitro estão, indubitavelmente, sob contínua condição de estresse, os quais resultam em alterações metabólicas características do estresse oxidativo. Anatomicamente, plantas ou brotos afetados frequentemente apresentam-se inchados, com coloração verde claro, folhas translúcidas e com aparência de vidro, baixa relação número de células/área celular e hipolignificação. Alterações fisiológicas que ocorrem nas principais vias metabólicas, incluindo fotossíntese, respiração e transpiração, resultam em redução de eficiência dessas vias metabólicas. Os distúrbios morfológicos, fisiológicos e bioquímicos são desencadeados por fatores físicos, relacionados ao ambiente dos recipientes de cultivo e consistência do meio de cultura ou por fatores químicos como os componentes do meio de cultura, em especial dos reguladores de crescimento em altas concentrações. A hiperidricidade ocorre em vários níveis de severidade, chegando a resultar na perda irreversível da capacidade morfogênica e o estabelecimento de um estado neoplásico das células, no entanto, na maioria dos casos, a hiperidricidade é considerada reversível. Esta revisão foca o conhecimento atual sobre o fenômeno da hiperidricidade abordando aspectos morfológicos, fisiológicos, bioquímicos e a reversibilidade do processo.
RESUMO
Aspergillus parasiticus microbial type culture collection (MTCC)-2796, a new source of a-galactosidase is an efficient producer of enzyme in basic medium under submerged fermentation conditions. Maximum a-galactosidase production (156.25 Uml-1) was obtained when the basic medium is supplemented with galactose (0.5 percent w/v) and raffinose (0.5 percent w/v) as carbon source and yeast extract as nitrogen source. Enzyme production was also enhanced considerably in the presence of wheat bran (1.0 percent w/v). Enzyme secretion was strongly inhibited by the presence of Hg2+, Cu2+, and Co2+ in the medium and to some extent by Zn2+ and Ni2+, while marginal increase in the enzyme production was observed when Mg2+ and Mn2+ were added in the medium. Among amino acids checked (aparagine, cysteine, glutamine, leucine and proline), glutamine (1 mM) was found to be an enhancer for the enzyme production. The temperature and pH range for the production of enzyme were 25ºC to 35ºC and 6.5 to 7.5, respectively with maximum activity (50 Uml-1) at 30ºC and pH 6.5 under static fermentation condition.