Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080551

RESUMO

Reinforcement steel extensively applied in civil construction is susceptible to corrosion due to the carbonation process in reinforced concrete and chloride ions diffusion. Epoxy-silica-based coatings are a promising option to guarantee the long-term stability of reinforced concrete structures. In this study, the influence of the proportion between the poly (bisphenol-A-co-epichlorhydrin) resin (DGEBA) and the curing agent diethylenetriamine (DETA) on the structural, morphological, and barrier properties of epoxy-silica nanocomposites were evaluated. To simulate different stages of concrete aging, electrochemical impedance spectroscopy (EIS) assays were performed for coated samples in a 3.5 wt.% NaCl solution (pH 7) and in simulated concrete pore solutions (SCPS), which represent the hydration environment in fresh concrete (SCPS2, pH 14) and after carbonation (SCPS1, pH 8). The results showed that coatings with an intermediate DETA to DGEBA ratio of 0.4, presented the best long-term corrosion protection with a low-frequency impedance modulus of up to 3.8 GΩ cm2 in NaCl and SCPS1 solutions. Small-angle X-ray scattering and atomic force microscopy analysis revealed that the best performance observed for the intermediate DETA proportion is associated with the presence of larger silica nanodomains, which act as a filler in the cross-linked epoxy matrix, thus favoring the formation of an efficient diffusion barrier.

2.
ACS Appl Mater Interfaces ; 12(40): 45254-45265, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32910633

RESUMO

The design of new materials with two or more functional groups must be strongly considered to achieve multifunctional coatings with outstanding properties such as active-passive protection against corrosion, low-friction, antifouling, and sensing, among others. In this sense, nanocomposites based on solvent-free epoxy resin/bifunctionalized reduced graphene oxide layers with NH2 and NH3+ groups (ER/BFRGO) with super-anticorrosive properties are for the first time reported here. The amine groups (-NH2) act as cross-linker agents, which react with epoxy terminal groups from resin, thus closing the gap between the BFRGO layers and the polymeric matrix. Meanwhile, the ammonium ions (-NH3+) are effective trapping agents of negatively charged atoms or molecules (e.g., Cl-). This novel combination enables us to obtain nanocomposite coatings with passive-active protection against corrosion. ER/BFRGO deposited onto A36 mild steel exhibited a remarkably enhanced barrier against corrosion into a saline medium (1 M NaCl; 58.4 g/L), wherein the corrosion current density (icorr) was diminished 6 orders of magnitude (icorr = 5.12 × 10-12 A/cm2), with respect to A36 mild steel coated only with ER (icorr = 2.34 × 10-6 A/cm2). Also, the highest polarization resistance Rp = 6.04 × 107 Ω/cm2 was obtained, which represents the lowest corrosion rate and corresponds to 3 orders of magnitude higher than A36 mild steel coated with ER (Rp = 1.43 × 104 Ω/cm2). The strategy of bifunctionalization proposed herein to obtain bifunctionalized reduced GO with NH2 and NH3+ groups has not been disclosed in the literature before; in consequence, this work opens a new pathway toward the design of smart materials based on multifunctional nanomaterials.

3.
Mater Sci Eng C Mater Biol Appl ; 116: 111149, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806280

RESUMO

Organic-inorganic hybrid coatings deposited on different types of metallic alloys have shown outstanding anticorrosive performance. The incorporation of osteoconductive additives such as hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP) into organic-inorganic hybrid coatings is promising to improve the osseointegration and corrosion resistance of Ti6Al4V alloys, which are the most widely used metallic orthopedic and dental implant materials today. Therefore, this study evaluated the capability of poly(methyl methacrylate) (PMMA)-TiO2 and PMMA-ZrO2 hybrid coatings modified with HA and ß-TCP to act as bioactive and corrosion protection coatings for Ti6Al4V alloys. In terms of cell growth and mineralization, osteoblast viability, Ca+2 deposition and alkaline phosphatase assays revealed a significant improvement for the HA and ß-TCP modified coatings, compared to the bare alloy. This can be explained by an increase in nanoscale roughness and associated higher surface free energy, which lead to enhanced protein adsorption to promote osteoblast attachment and functions on the coatings. The effect of HA and ß-TCP additives on the anticorrosive efficiency was studied by electrochemical impedance spectroscopy (EIS) in a simulated body fluid (SBF) solution. The coatings presented a low-frequency impedance modulus of up to 430 GΩ cm2, 5 decades higher than the bare Ti6Al4V alloy. These findings provide clear evidence of the beneficial role of HA and ß-TCP modified hybrid coatings, improving both the biocompatibility and corrosion resistance of the Ti6Al4V alloy.


Assuntos
Materiais Revestidos Biocompatíveis , Durapatita , Polimetil Metacrilato , Ligas/farmacologia , Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis/farmacologia , Corrosão , Teste de Materiais , Propriedades de Superfície , Titânio
4.
ACS Appl Mater Interfaces ; 12(17): 19823-19833, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32297507

RESUMO

The use of smart nanocontainers to store corrosion inhibitors in coatings significantly increases the efficiency and durability of the coating, providing active corrosion protection. Here we report the synthesis of a zinc-layered hydroxide salt (LHS) and its use as a novel nanocontainer for this purpose, storing the corrosion inhibitor molybdate in the interlayer region of the LHS. Layered zinc hydroxide molybdate (ZHM) was obtained by anion-exchange reactions using layered zinc hydroxide acetate (ZHA) as a precursor, obtained by alkaline coprecipitation. The release behavior of molybdate from the ZHM nanocontainers in aqueous NaCl solution (0.05 mol/L) was evaluated using UV-vis absorption spectroscopy. The molybdate release from the ZHM nanocontainers was realized by the anion-exchange mechanism, where chloride anions replaced intercalated molybdate anions. The release was fast in the first minutes of exposure, followed by a controlled release afterward, reaching about 35% of cumulative amount of released molybdate after 30 days of exposure. The anticorrosion effect provided by the ZHM nanocontainers for carbon steel was investigated by electrochemical impedance spectroscopy. The steel substrate was coated with an epoxy resin loaded with ZHM nanocontainers (5 wt %) and immersed in an NaCl solution (0.05 mol/L) to evaluate the active mechanisms of inhibition and the anticorrosion properties of the loaded coating in comparison with a neat coating (blank). The coating loaded with ZHM nanocontainers presented the best corrosion protection performance, exhibiting an increase of RC (coating resistance) with the immersion time and superior RP (polarization resistance) for all the measured periods, compared to the blank. This effect is a consequence of the double mechanism of protection provided by the ZHM nanocontainers: (i) stimulus-response release of molybdate and its active inhibition in the scratched region by the formation of an insoluble protective film, simultaneously with (ii) removal of the corrosive chloride species from the medium.

5.
Polymers (Basel) ; 9(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-30970857

RESUMO

This work reports the effect of different amounts of ceria nanoparticles on UV resistance and barrier properties of water-based polyurethane (WPU) on glass and AA7075 aluminum alloy substrates. Hybrid coatings were synthesized from an aliphatic WPU⁻HDI (1,6-hexamethylene di-isocyanate) and cerium oxide nanoparticles (CeO2) with an average particle size distribution of about 25 nm. Different nanoceria amounts (1, 3 and 5 wt %), mixing times (30, 60 and 120 min) and methods to disperse the nanostructures into the polymer matrix (magnetic stirring and sonication) were evaluated. Initially, the dispersion of CeO2 nanoparticles embedded in the polymer matrix and displacement in the corrosion potential (Ecorr) were analyzed by confocal scanning laser microscopy (CLSM) and open circuit potential (Eocp) measurements. According to this behavior, the dispersion and water ratio required during the polymerization process were established. Coated samples obtained after the second stage were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical light microscopy. In addition, optical measurements on glass substrates were evaluated with UV-vis spectroscopy. The effect of the synthesis parameters on the corrosion behavior of WPU⁻CeO2/AA7075 systems was investigated with Eocp and electrochemical impedance spectroscopy (EIS) in a 3 wt % NaCl solution. In addition, the films were subjected to 180 h of accelerated weathering. The results show that the combination of specific nanoceria addition with the optimal synthesis parameters enhances optical transparence of WPU as well as barrier properties. From these, the coated specimens prepared with 3 wt % of ceria content and sonicated for 30 min showed a highly dispersed system, which results in a high charge transfer resistance. The observed properties in clear coats deposited on metallic substrates suggested an improvement in the appearance and less deterioration in UV exposure in comparison with pure WPU, enhancing the protective properties of the AA7075 aluminum alloy when exposed to a corrosive medium.

6.
Mater Sci Eng C Mater Biol Appl ; 44: 317-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280711

RESUMO

Nitinol (equiatomic Ni and Ti alloy (NiTi)) substrate was modified using a coating system formed by a self-assembled film of alkylsilane compounds (propyltrichlorosilane (C3H7SiCl3) or octadecyltrichlorosilane (C18H37SiCl3)) and polypyrrole (PPy) doped with sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT or AOT). The combination of alkylsilanes and the presence of a voluminous molecule like AOT entrapped into the PPy films improve the pitting corrosion resistance of the substrate in chloride solution. The best performance was achieved with the longest alkylsilane chains, where the PPy film remains adhered to the underlying coating after a pitting corrosion test.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Pirróis/química , Silanos/química , Corrosão , Técnicas Eletroquímicas , Microscopia Eletrônica de Varredura , Níquel/química , Soluções , Propriedades de Superfície , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA