Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38932032

RESUMO

Clay minerals have different negative effects on the froth flotation process such as low adsorption of collectors on valuable minerals, increased pulp viscosity, and the reduction in recovery and grade concentrates of copper sulfides. This study aims to evaluate the use of polystyrene-based nanoparticles (NPs) for the froth flotation of chalcopyrite and their ability to mitigate the negative effect of montmorillonite on the recovery of this sulfide. The experimental stage consisted of preparing a type of polystyrene-based nanoparticle (St-CTAB-VI), which was analyzed by dynamic night scattering (DLS) to establish its hydrodynamic size. Then, the effect of NPs on chalcopyrite's angle's in the presence and absence of montmorillonite (15%) was evaluated and compared with the contact angle achieved using potassium amyl xanthate (PAX) and a mixture of PAX and NPs. In addition, zeta potential measurements were carried out to investigate the interactions between the chalcopyrite and the montmorillonite or the NPs under fixed concentrations and microflotation tests were performed employing different times to evaluate the chalcopyrite recovery in the presence of montmorillonite, using NPs and mixtures with PAX. Finally, turbidity analysis as a function of time was performed to evaluate the occurrence of sedimentation and flocculation phenomena in suspensions of 15% montmorillonite in the presence and absence of chalcopyrite, nanoparticles, and mixtures of NPs and PAX. The results indicated that the mixture of NPs and PAX contributed to increasing the contact angle of chalcopyrite in the presence of montmorillonite. This can be associated with the presence of molecular and nanometric collectors that generated a higher hydrophobicity on the chalcopyrite particles, contributing to reducing the presence of clay minerals on the mineral surface. In addition, the mixture of NPs and PAX promoted the generation of nanoparticles on the sulfide mineral surface, which helps to detach the slime and facilitate the bubble/mineral attachment step during flotation.

2.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501653

RESUMO

This study proposes the use of polymeric nanoparticles (NPs) as collectors for copper sulfide flotation. The experimental phase included the preparation of two types of polystyrene-based NPs: St-CTAB and St-CTAB-VI. These NPs were characterized by Fourier-Transform Infrared (FTIR) spectroscopy and dynamic light scattering (DLS). Then, microflotation tests with chalcopyrite under different pH conditions and nanoparticle dosages were carried out to verify their capabilities as chalcopyrite collectors. In addition, the zeta potential (ZP) measurements of chalcopyrite in the presence and absence of NPs were carried out to study their interaction. Lastly, some Atomic Force Micrographs (AFM) of NPs and Scanning Electronic Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) analysis of NPs on the chalcopyrite surface were conducted to analyze the size, the morphology and their interaction. The results obtained at pH 6 and pH 8 show that the NPs under study can achieve a chalcopyrite recovery near or higher than that obtained with the conventional collector. In this study, it was possible to observe that the NPs functionalized by the imidazole group (St-CTAB-VI) achieved better performance due to the presence of this group in its composition, allowing to achieve a greater affinity with the surface of the mineral.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30834244

RESUMO

Bioleaching is a mature technology, which is widely employed commercially in the leaching of primary sources of metals (ores, concentrates, and mine residues). The current work discussed the effects of aluminum sulfate additions to the growth medium, PLS recirculation and bleeding on the column bioleaching of secondary copper sulfide ores with a significant content of fluoride-containing minerals. Fluoride is toxic to bacteria at the pH of bioleaching but its toxicity may be overcome in the presence of soluble aluminum and ferric iron. Therefore, experiments were carried out in 10 × 100 cm height aerated columns, loaded with 10 kg of crushed and agglomerated copper ore and inoculated with Sulfobacillus thermosulfidooxidans. Initially, fluoride concentrations of up to 2.5 g/L in the pregnant leach solution were observed due to the fast dissolution of fluoride-bearing minerals. Aluminum was added to the leaching solution to reduce the Al/F ratio so that the concentration of HF (the main toxic species) was decreased, but while the total fluoride concentration was higher than that of aluminum, the bacterial population as low. Therefore, the current work emphasizes that it is possible to set up conditions to enable bioleaching even at high fluoride concentrations. Following this approach, copper extractions above 90% were achieved for a H2SO4 consumption ranging from 128.8 to 206.1 Kg/ton.

4.
Stand Genomic Sci ; 11: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925196

RESUMO

Leptospirillum ferriphilum Sp-Cl is a Gram negative, thermotolerant, curved, rod-shaped bacterium, isolated from an industrial bioleaching operation in northern Chile, where chalcocite is the major copper mineral and copper hydroxychloride atacamite is present in variable proportions in the ore. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of chloride, sulfate and metals. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 2,475,669 bp draft genome is arranged into 74 scaffolds of 74 contigs. A total of 48 RNA genes and 2,834 protein coding genes were predicted from its annotation; 55 % of these were assigned a putative function. Release of the genome sequence of this strain will provide further understanding of the mechanisms used by acidophilic bacteria to endure high osmotic stress and high chloride levels and of the role of chloride-tolerant iron-oxidizers in industrial bioleaching operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA