Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch. endocrinol. metab. (Online) ; 68: e220501, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520076

RESUMO

ABSTRACT Objective: To explore the diagnostic value of the TUIAS (SW_TH01/II) computer-aided diagnosis (CAD) software system for the ultrasound Thyroid Imaging Reporting and Data System (TI-RADS) features in thyroid nodules. Materials and methods: This retrospective study enrolled patients with thyroid nodules in Shanghai East Hospital between January 2017 and October 2021. The novel CAD software (SW_TH01/II) and three sonographers performed a qualitative analysis of the ultrasound TI-RADS features in aspect ratio, margin irregularity, margin smoothness, calcification, and echogenicity of the thyroid nodules. Results: A total of 225 patients were enrolled. The accuracy, sensitivity, and specificity of the CAD software in "aspect ratio" were 95.6%, 96.2%, and 95.4%, in "margin irregularity" were 90.7%, 90.5%, and 90.9%, in "margin smoothness" were 85.8%, 88.5%, and 83.0%, in "calcification" were 83.6%, 81.7%, and 82.0%, in "homogeneity" were 88.9%, 90.6%, and 82.2%, in "major echo" were 85.3%, 88.0%, and 85.4%, and in "contains very hypoechoic echo" were 92.0%, 90.0%, and 92.4%. The analysis time of the CAD software was significantly shorter than for the sonographers (2.7 ± 1.6 vs. 29.7 ± 12.7 s, P < 0.001). Conclusion: The CAD system achieved high accuracy in describing thyroid nodule features. It might assist in clinical thyroid nodule analysis.

2.
Arch Endocrinol Metab ; 68: e220501, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948567

RESUMO

Objective: To explore the diagnostic value of the TUIAS (SW_TH01/II) computer-aided diagnosis (CAD) software system for the ultrasound Thyroid Imaging Reporting and Data System (TI-RADS) features in thyroid nodules. Materials and methods: This retrospective study enrolled patients with thyroid nodules in Shanghai East Hospital between January 2017 and October 2021. The novel CAD software (SW_TH01/II) and three sonographers performed a qualitative analysis of the ultrasound TI-RADS features in aspect ratio, margin irregularity, margin smoothness, calcification, and echogenicity of the thyroid nodules. Results: A total of 225 patients were enrolled. The accuracy, sensitivity, and specificity of the CAD software in "aspect ratio" were 95.6%, 96.2%, and 95.4%, in "margin irregularity" were 90.7%, 90.5%, and 90.9%, in "margin smoothness" were 85.8%, 88.5%, and 83.0%, in "calcification" were 83.6%, 81.7%, and 82.0%, in "homogeneity" were 88.9%, 90.6%, and 82.2%, in "major echo" were 85.3%, 88.0%, and 85.4%, and in "contains very hypoechoic echo" were 92.0%, 90.0%, and 92.4%. The analysis time of the CAD software was significantly shorter than for the sonographers (2.7 ± 1.6 vs. 29.7 ± 12.7 s, P < 0.001). Conclusion: The CAD system achieved high accuracy in describing thyroid nodule features. It might assist in clinical thyroid nodule analysis.


Assuntos
Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Estudos Retrospectivos , Sensibilidade e Especificidade , China , Ultrassonografia/métodos , Diagnóstico por Computador
3.
BMC Med Inform Decis Mak ; 18(1): 50, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29945614

RESUMO

BACKGROUND: The performance of Computer Aided Diagnosis Systems for early melanoma detection relies mainly on quantitative evaluation of the geometric features corresponding to skin lesions. In these systems, diagnosis is carried out by analyzing four geometric characteristics: asymmetry (A), border (B), color (C) and dimension (D). The main objective of this study is to establish an algorithm for the measurement of asymmetry in biological entities. METHODS: Binary digital images corresponding to lesions are divided into 8 segments from their centroid. For each segment, the discrete compactness value is calculated using Normalized E-Factor (NEF). The asymmetry value is obtained from the sum of the square difference of each NEF value and corresponding value of its opposite by the vertex. Two public skin cancer databases were used. 1) Lee's database with 40 digital regions evaluated by fourteen dermatologists. 2) The PH2 database which consists of 200 images in an 8-bit RGB format. This database provides a pre-classification of asymmetry carried out by experts, and it also indicates if the lesion is a melanoma. RESULTS: The measure was applied using two skin lesion image databases. 1) In Lee's database, Spearman test provided a value of 0.82 between diagnosis of dermatologists and asymmetry values. For the 12 binary images most likely to be melanoma, the correlation between the measurement and dermatologists was 0.98. 2) In the PH2 database a label is provided for each binary image where the type of asymmetry is indicated. Class 0-1 corresponds to symmetry and one axis of symmetry shapes, the completely asymmetrical were assigned to Class 2, the values of sensitivity and specificity were 59.62 and 85.8% respectively between the asymmetry measured by a group of dermatologists and the proposed algorithm. CONCLUSIONS: Simple image digital features such as compactness can be used to quantify the asymmetry of a skin lesion using its digital binary image representation. This measure is stable taking into account translations, rotations, scale changes and can be applied to non-convex regions, including areas with holes.


Assuntos
Algoritmos , Diagnóstico por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico , Dermatopatias/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA