Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Phys Ther ; 28(3): 101083, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38838418

RESUMO

BACKGROUND: The development and application of Artificial Intelligence (AI) and Machine Learning (ML) in healthcare have gained attention as a promising and powerful resource to change the landscape of healthcare. The potential of these technologies for injury prediction, performance analysis, personalized training, and treatment comes with challenges related to the complexity of sports dynamics and the multidimensional aspects of athletic performance. OBJECTIVES: We aimed to present the current state of AI and ML applications in sports science, specifically in the areas of injury prediction, performance enhancement, and rehabilitation. We also examine the challenges of incorporating AI and ML into sports and suggest directions for future research. METHOD: We conducted a comprehensive literature review, focusing on publications related to AI and ML applications in sports. This review encompassed studies on injury prediction, performance analysis, and personalized training, emphasizing the AI and ML models applied in sports. RESULTS: The findings highlight significant advancements in injury prediction accuracy, performance analysis precision, and the customization of training programs through AI and ML. However, future studies need to address challenges such as ethical considerations, data quality, interpretability of ML models, and the integration of complex data. CONCLUSION: AI and ML may be useful for the prevention, detection, diagnosis, and treatment of health conditions. In this Masterclass paper, we introduce AI and ML concepts, outline recent breakthroughs in AI technologies and their applications, identify the challenges for further progress of AI systems, and discuss ethical issues, clinical and research opportunities, and future perspectives.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Esportes , Humanos , Traumatismos em Atletas , Desempenho Atlético
2.
Sci Rep ; 14(1): 5930, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467669

RESUMO

With widespread cultivation, Cucurbita moschata stands out for the carotenoid content of its fruits such as ß and α-carotene, components with pronounced provitamin A function and antioxidant activity. C. moschata seed oil has a high monounsaturated fatty acid content and vitamin E, constituting a lipid source of high chemical-nutritional quality. The present study evaluates the agronomic and chemical-nutritional aspects of 91 accessions of C. moschata kept at the BGH-UFV and propose the establishment of a core collection based on multivariate approaches and on the implementation of Artificial Neural Networks (ANNs). ANNs was more efficient in identifying similarity patterns and in organizing the distance between the genotypes in the groups. The averages and variances of traits in the CC formed using a 15% sampling of accessions, were closer to those of the complete collection, particularly for accumulated degree days for flowering, the mass of seeds per fruit, and seed and oil productivity. Establishing the 15% CC, based on the broad characterization of this germplasm, will be crucial to optimize the evaluation and use of promising accessions from this collection in C. moschata breeding programs, especially for traits of high chemical-nutritional importance such as the carotenoid content and the fatty acid profile.


Assuntos
Cucurbita , Cucurbita/genética , Brasil , Melhoramento Vegetal , Carotenoides , Frutas/genética
3.
Front Psychol ; 14: 1209761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663348

RESUMO

This paper aims to address the divergences and contradictions in the definition of intelligence across different areas of knowledge, particularly in computational intelligence and psychology, where the concept is of significant interest. Despite the differences in motivation and approach, both fields have contributed to the rise of cognitive science. However, the lack of a standardized definition, empirical evidence, or measurement strategy for intelligence is a hindrance to cross-fertilization between these areas, particularly for semantic-based applications. This paper seeks to equalize the definitions of intelligence from the perspectives of computational intelligence and psychology, and offer an overview of the methods used to measure intelligence. We argue that there is no consensus for intelligence, and the term is interchangeably used with similar, opposed, or even contradictory definitions in many fields. This paper concludes with a summary of its central considerations and contributions, where we state intelligence is an agent's ability to process external and internal information to find an optimum adaptation (decision-making) to the environment according to its ontology and then decode this information as an output action.

5.
MethodsX ; 10: 102059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36851982

RESUMO

Predictive models are statistical representations that indicate, based on the historical data analysis, the probability of triggering a given phenomenon in the future. In geosciences, such models have been essential to predict the occurrence of adverse phenomena commonly associated with environmental disasters, such as gully erosion. Therefore, this paper presents a method for producing gully erosion predictive models based on geoenvironmental data and machine learning techniques. The method's effectiveness test was produced in a region of approximately 40,000 km² in southeastern Brazil and compared the predictive performance of four models designed with different machine learning algorithms. The results demonstrated that the technique is capable of producing models with high predictive ability, with emphasis on the random forest algorithm, which, in addition to having achieved the highest levels of accuracy, also produced highly realistic maps for the study area.•The method is straightforward and may be applied to predict other geological processes.•The application of the method does not require knowledge of programming language.•The models produced achieved high predictive performance.

6.
Heliyon ; 8(10): e10846, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36203901

RESUMO

Dengue is the most widespread vector-borne disease worldwide. Timely diagnosis and treatment of dengue is the main objective of medical professionals to decrease mortality rates. In this paper, we propose an autonomous cycle that integrates data analysis tasks to support decision-making in the clinical management of dengue. Particularly, the autonomous cycle supports dengue diagnosis and treatment. The proposed system was built using machine learning techniques for classification tasks (artificial neural networks and support vector machines) and evolutionary techniques (a genetic algorithm) for prescription tasks (treatment). The system was quantitatively evaluated using dengue-patient datasets reported by healthcare institutions. Our system was compared with previous works using qualitative criteria. The proposed system has the ability to classify a patient's clinical picture and recommend the best treatment option. In particular, the classification of dengue was done with 98% accuracy and a genetic algorithm recommends treatment options for particular patients. Finally, our system is flexible and easily adaptable, which will allow the addition of new tasks for dengue analysis.

7.
Front Public Health ; 10: 900077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719644

RESUMO

Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models.


Assuntos
Infecções por Arbovirus/virologia , Arbovírus/classificação , Vetores Artrópodes/classificação , Aprendizado de Máquina , Doenças Negligenciadas/virologia , Saúde Pública/métodos , Animais , Infecções por Arbovirus/epidemiologia , Infecções por Arbovirus/transmissão , Arbovírus/patogenicidade , Arbovírus/fisiologia , Vetores Artrópodes/virologia , Humanos , Aprendizado de Máquina/normas , Aprendizado de Máquina/tendências , Modelos Estatísticos , Doenças Negligenciadas/epidemiologia , Saúde Pública/tendências
8.
Food Chem (Oxf) ; 3: 100056, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415642

RESUMO

Studies have shown that dwarf plants have the potential for use in obtaining hybrids. The aim of this study was to evaluate the agronomic potential and genetic dissimilarity of saladette type dwarf tomato plant populations through the use of artificial neural networks (ANNs). The following traits were analyzed: mean fruit weight, transverse and longitudinal fruit diameter, fruit shape, pulp thickness, locule number, internode length, soluble solids content, and ß-carotene, lycopene, and leaf zingiberene contents. A dendrogram obtained by the unweighted pair-group method with arithmetic mean (UPGMA) and Kohonen self-organizing maps (SOM) agreed in the distinction of the BC1F3 populations from the dwarf donor parent. SOM was more consistent in identifying the genetic similarities among the BC1F3 dwarf tomato plant populations and allowed for the determination of weights of each variable in the cluster formation. The UFU SDi 13-1 BC1F3 population was revealed to be a promising option for obtaining saladette type dwarf tomato plant lines.

9.
Front Med (Lausanne) ; 8: 784455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145977

RESUMO

A main goal of Precision Medicine is that of incorporating and integrating the vast corpora on different databases about the molecular and environmental origins of disease, into analytic frameworks, allowing the development of individualized, context-dependent diagnostics, and therapeutic approaches. In this regard, artificial intelligence and machine learning approaches can be used to build analytical models of complex disease aimed at prediction of personalized health conditions and outcomes. Such models must handle the wide heterogeneity of individuals in both their genetic predisposition and their social and environmental determinants. Computational approaches to medicine need to be able to efficiently manage, visualize and integrate, large datasets combining structure, and unstructured formats. This needs to be done while constrained by different levels of confidentiality, ideally doing so within a unified analytical architecture. Efficient data integration and management is key to the successful application of computational intelligence approaches to medicine. A number of challenges arise in the design of successful designs to medical data analytics under currently demanding conditions of performance in personalized medicine, while also subject to time, computational power, and bioethical constraints. Here, we will review some of these constraints and discuss possible avenues to overcome current challenges.

10.
Data Brief ; 33: 106353, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33102645

RESUMO

This paper presents high quality (2048 × 1532 pixels) Light Microscope steel images sampled from the welding fusion zone. The microstructure images were acquired from the Design of Experiments (22 full factorial design) planned to compare two different arc welding processes at two different arc welding energies [1]. The 400 raw images appear as they were captured by the microscope and they are categorized into four groups: that acquired from the Flux Cored Arc Welding process and that acquired from the Shielded Metal Arc Welding process; both of them run for high and low levels of arc energy. For the Flux Cored Arc Welding process, ASME SFA 5.20 E71T-5C(M) tubular wire was used, with a nominal diameter of 1.2 mm. For the Shielded Metal Arc Welding process, AWS E7018 coated electrodes were used, with nominal diameters of 3.25 mm (for the low energy level) and 5.00 mm (for the high energy level). The deposition of the beads was run on AISI 1010 steel plates in the flat position (bead-on-plate). Different proportions of primary grain boundary ferrite; polygonal ferrite; acicular ferrite; nonaligned side-plate ferrite and aligned side-plate ferrite can be observed in each image. This image dataset is ready to visual and automatic microstructure recognition and quantification. It can be a useful resource for computational intelligence research teams, e.g. [2], by offering images for handling as filtering, feature extraction, training, validation and testing in pattern recognition and machine learning techniques.

11.
Front Robot AI ; 7: 111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33501278

RESUMO

The study of sustainability challenges requires the consideration of multiple coupled systems that are often complex and deeply uncertain. As a result, traditional analytical methods offer limited insights with respect to how to best address such challenges. By analyzing the case of global climate change mitigation, this paper shows that the combination of high-performance computing, mathematical modeling, and computational intelligence tools, such as optimization and clustering algorithms, leads to richer analytical insights. The paper concludes by proposing an analytical hierarchy of computational tools that can be applied to other sustainability challenges.

12.
Plant Sci ; 284: 37-47, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084877

RESUMO

Machine learning (ML) is a field of artificial intelligence that has rapidly emerged in molecular biology, thus allowing the exploitation of Big Data concepts in plant genomics. In this context, the main challenges are given in terms of how to analyze massive datasets and extract new knowledge in all levels of cellular systems research. In summary, ML techniques allow complex interactions to be inferred in several biological systems. Despite its potential, ML has been underused due to complex computational algorithms and definition terms. Therefore, a systematic review to disentangle ML approaches is relevant for plant scientists and has been considered in this study. We presented the main steps for ML development (from data selection to evaluation of classification/prediction models) with a respective discussion approaching functional genomics mainly in terms of pathogen effector genes in plant immunity. Additionally, we also considered how to access public source databases under an ML framework towards advancing plant molecular biology and introduced novel powerful tools, such as deep learning.


Assuntos
Aprendizado de Máquina , Biologia Molecular/métodos , Plantas/genética , Bases de Dados Genéticas , Plantas/metabolismo
13.
Sci. agric ; 76(2): 123-129, Mar.-Apr. 2019. tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497766

RESUMO

The methods of Annicchiarico (1992) and Cruz et al. (1989) are widely used in phenotypic adaptability and stability analyses in plant breeding. In spite of the importance of these methodologies, their parameters are difficult to interpret. The aim of this research was to develop fuzzy controllers to automate the decision-making process employed by adaptability and stability studies following the methods adopted by Annicchiarico (1992) and Cruz et al. (1989) and check their efficiency using experimental data from common bean cultivars. Fuzzy controllers have been developed based on the Mamdani inference system proposed by these two methods of adaptability and stability studies. For the first fuzzy controller parameters were considered favorable environments and the recommendation index for unfavorable environments obtained by Annicchiarico's method (1992). For the second controller the parameters considered were the general mean (β0), coefficient of regression of unfavorable environments (β1) and coefficient of favorable environments (β1i + β2i) and the coefficient of determination of the method of Cruz et al. (1989). To check the performance of these drivers yield data from field trials on 18 common bean cultivars grown in 11 environments were used. The controllers were developed from established routines in the R software and, using the inference system based on the methods proposed by Annicchiarico (1992) and Cruz et al. (1989), classified the 18 genotypes appropriately in accordance with the criteria for each method. Thus, the methods used are effective, and are prescribed for decision-making automation in yield adaptability and stability studies pertaining to recommendation of cultivars.

14.
Sci. agric. ; 76(2): 123-129, Mar.-Apr. 2019. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-740860

RESUMO

The methods of Annicchiarico (1992) and Cruz et al. (1989) are widely used in phenotypic adaptability and stability analyses in plant breeding. In spite of the importance of these methodologies, their parameters are difficult to interpret. The aim of this research was to develop fuzzy controllers to automate the decision-making process employed by adaptability and stability studies following the methods adopted by Annicchiarico (1992) and Cruz et al. (1989) and check their efficiency using experimental data from common bean cultivars. Fuzzy controllers have been developed based on the Mamdani inference system proposed by these two methods of adaptability and stability studies. For the first fuzzy controller parameters were considered favorable environments and the recommendation index for unfavorable environments obtained by Annicchiarico's method (1992). For the second controller the parameters considered were the general mean (β0), coefficient of regression of unfavorable environments (β1) and coefficient of favorable environments (β1i + β2i) and the coefficient of determination of the method of Cruz et al. (1989). To check the performance of these drivers yield data from field trials on 18 common bean cultivars grown in 11 environments were used. The controllers were developed from established routines in the R software and, using the inference system based on the methods proposed by Annicchiarico (1992) and Cruz et al. (1989), classified the 18 genotypes appropriately in accordance with the criteria for each method. Thus, the methods used are effective, and are prescribed for decision-making automation in yield adaptability and stability studies pertaining to recommendation of cultivars.(AU)

15.
Sensors (Basel) ; 18(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346288

RESUMO

According to UNESCO, education is a fundamental human right and every nation's citizens should be granted universal access with equal quality to it. Because this goal is yet to be achieved in most countries, in particular in the developing and underdeveloped countries, it is extremely important to find more effective ways to improve education. This paper presents a model based on the application of computational intelligence (data mining and data science) that leads to the development of the student's knowledge profile and that can help educators in their decision making for best orienting their students. This model also tries to establish key performance indicators to monitor objectives' achievement within individual strategic planning assembled for each student. The model uses random forest for classification and prediction, graph description for data structure visualization and recommendation systems to present relevant information to stakeholders. The results presented were built based on the real dataset obtained from a Brazilian private k-9 (elementary school). The obtained results include correlations among key data, a model to predict student performance and recommendations that were generated for the stakeholders.

16.
Rev. bras. eng. biomed ; 24(2): 91-98, ago. 2008. ilus, tab, graf
Artigo em Português | LILACS | ID: lil-576305

RESUMO

A análise acurada da frequência cardíaca fetal (FCF) correlacionada com as contrações uterinas permite diagnosticar, e consequentemente antecipar, diversos problemas relativos ao bem estar fetal e à preservação de sua vida. O presente trabalho apresenta os resultados de um sistema híbrido, baseado em regras determinísticas e em um módulo de inferência nebuloso do tipo Mamdani, para análise de sinais coletados através de exames denominados cardiotocografias (CTG). As variáveis analisadas são: o valor basal da FCF, suas variabilidades de curto e de longo prazo, acelerações transitórias e desacelerações, sendo estas classificadas por seu tipo e número de ocorrências. São utilizados dois modelos de classificação. A saída do sistema, em qualquer dos modelos, é um diagnóstico de primeiro nível baseado nestas variáveis de entrada. O sistema inteligente para auxílio ao diagnóstico no monitoramento fetal eletrônico por análise de cardiotocografias (SISCTG) foi desenvolvido na linguagem de scripts do programa MATLAB® v.7. O projeto conta também com uma parceria multi-institucional entre o Brasil e a Alemanha, envolvendo o Departamento de Engenharia de Teleinformática (DETI) da Universidade Federal do Ceará (UFC), a Maternidade-Escola Assis Chateaubriand (MEAC), a Technische Universitãt München e a empresa alemã Trium GmbH, que fornece a base de dados utilizada neste trabalho. Os resultados apresentados pelo SISCTG mostram-se promissores, com um índice de acertos (comparando-se os dois modelos utilizados) variando de 83% a 100%, de acordo com o tipo de diagnóstico. Isto permite projetar o aprimoramento deste sistema com novas variáveis de entrada (como a entropia aproximada da FCF e da sua variabilidade). A validação do sistema contou com especialistas brasileiros e alemães na área obstétrica.


The accurate analysis of the fetal heart rate (FHR) and its correlation with uterine contractions (UC) allow the diagnostic and the anticipation of many problems related to fetal distress and the preservation of its life. This paper presents the results of a hybrid system based on a set of deterministic rules and fuzzy inference system developed to analyze FHR and UC signals collected by cardiotocography (CTG) exams. The studied variables are basal FHR, short and long-term FHR variability, transitory accelerations and decelerations, these lasts classified by their type and number of occurrences. Two classification models are used. For both models, the system output is a first level diagnostic based on those input variables. The system is developed using the MATLAB® v.7 script language. The project is also supported by a multi-institutional agreement between Brazil and Germany, among the DETI (Departamento de Engenharia de Teleinformática of the Universidade Federal do Ceará), the MEAC (Maternidade-Escola Assis Chateaubriand), the TUM (Technische Universitãt München), and the Trium GmbH, a German company who supplied the database used in this project. The results are very promising with a diagnostic accuracy (considering the two models used) varying from 83% to 100%, according to the type of diagnostic. These results allow the projection of refinements of the proposed system, inserting new input variables (such as the approximate entropy of the FHR and its variability). The system validation methodology was based on the knowledge of Brazilian and German obstetricians.


Assuntos
Cardiotocografia/instrumentação , Cardiotocografia , Diagnóstico Pré-Natal/instrumentação , Frequência Cardíaca Fetal/fisiologia , Sistemas Inteligentes/instrumentação , Contração Uterina/fisiologia , Lógica Fuzzy , Monitorização Fetal/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA