Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498426

RESUMO

Most plants produce floral nectar to attract pollinators that impact pollination and seed production; some of them also secrete extrafloral nectar harvested by insects that may influence the plant reproductive success. The aim of this study was to analyze the effects of excluding pollinators and/or ants on the per-plant reproductive success in two species (Dyckia floribunda Griseb. and Dyckia longipetala Baker, Bromeliaceae) that produce floral and extrafloral nectar. The hypothesis states that both ecological processes (pollination and ant defense) involving nectar-mediated animal-plant interactions are beneficial for plant reproductive success. We expected the highest decrease in the plant fruit and seed sets when the pollinators and ants were excluded, and a moderate decrease when solely ants were excluded, compared to the control plants (those exposed to pollinators and ants). In addition, a lower natural reproductive success was also expected in the self-incompatible D. longipetala than in the self-compatible D. floribunda, as the former totally depends on animal pollination for seed production. D. floribunda and D. longipetala presented similar trends in the response variables, and the expected results for the experimental treatments were observed, with some variations between species and among populations. The ecological function of nectar is important because these two plant species depend on pollinators to produce seeds and on ants to defend flowers from the endophytic larvae of Lepidoptera. The study of multispecies interactions through mechanistic experiments could be necessary to clarify the specific effects of different animals on plant reproductive success.

2.
Proc Biol Sci ; 289(1972): 20220086, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35382601

RESUMO

Modern agriculture is becoming increasingly pollinator-dependent. However, the global stock of domesticated honeybees is growing at a slower rate than its demand, while wild bees are declining worldwide. This uneven scenario of high pollinator demand and low pollinator availability can translate into increasing pollination limitation, reducing the yield of pollinator-dependent crops. However, overall assessments of crop pollination limitation and the factors determining its magnitude are missing. Based on 52 published studies including 30 crops, we conducted a meta-analysis comparing crop yield in pollen-supplemented versus open-pollinated flowers. We assessed the overall magnitude of pollination limitation and whether this magnitude was influenced by (i) the presence/absence of managed honeybees, (ii) crop compatibility system (i.e. self-compatible/self-incompatible) and (iii) the interaction between these two factors. Overall, pollen supplementation increased yield by approximately 34%, indicating sizable pollination limitation. Deployment of managed honeybees and self-compatibility were associated with lower pollination limitation. Particularly, active honeybee management decreased pollination limitation among self-compatible but apparently not among self-incompatible crops. These findings indicate that current pollination regimes are, in general, inadequate to maximize crop yield, even when including managed honeybees, and stress the need of transforming the pollination management paradigm of agricultural landscapes.


Assuntos
Produtos Agrícolas , Polinização , Agricultura , Animais , Abelhas , Flores , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA