RESUMO
The π-complexes of cationic coinage metal ions (Cu(I), Ag(I), Au(I)) provide useful experimental support for understanding fundamental characteristics of bonding and 13 C-NMR patterns of the group 11 triad. Here, we account for the role of relativistic effects on olefin-coinage metal ion interaction for cationic, homoleptic tris-ethylene, and tris-norbornene complexes, [M(η2 -C2 H4 )3 ]+ and [M(η2 -C7 H10 )3 ]+ (M = Cu, Ag, Au), as representative case of studies. The M-(CC) bond strength in the cationic, tris-ethylene complexes is affected sizably for Au and to a lesser extent for Ag and Cu (48.6%, 16.7%, and 4.3%, respectively), owing to the influence on the different stabilizing terms accounting for the interaction energy in the formation of coinage metal cation-π complexes. The bonding elements provided by olefin â M σ-donation and olefin â M π-backbonding are consequently affected, leading to a lesser covalent interaction going down in the triad if the relativistic effects are ignored. Analysis of the 13 C-NMR tensors provides further understanding of the observed experimental values, where the degree of backbonding charge donation to π2 *-olefin orbital is the main influence on the observed high-field shifts in comparison to the free olefin. This donation is larger for ethylene complexes and lower for norbornene counterparts. However, the bonding energy in the later complexes is slightly stabilized given by the enhancement in the electrostatic character of the interaction. Thus, the theoretical evaluation of metal-alkene bonds, and other metal-bonding situations, benefits from the incorporation of relativistic effects even in lighter counterparts, which have an increasing role going down in the group.
RESUMO
Coinage-metal atomically precise nanoclusters are made of a well-defined metallic core embedded in a ligand-protecting outer shell. Whereas gold derivatives are particularly well documented, examples of silver nanoclusters are somewhat limited and copper species remain particularly scare. Our DFT relativistic calculations on superatomic metallic cores indicate that copper species are almost as stable as gold clusters and more stable than their silver counterparts. Thus, for silver superatomic cores, the role of the stabilizing ligands is more crucial in the stabilization of the overall structure, in comparison to copper and gold. Hence, the chemistry of the earlier counterparts of gold, especially copper, should grow quickly with at least characterizations of species related to that found in the heavier elements in the triad, which requires tackling synthetic challenges. Time-dependent (TD)-DFT calculations show that with an increase of the cluster core nuclearity, the absorption bands are redshifted, allowing us to differentiate between the clusters types. Moreover, the optical properties of the silver cores are fairly different from that of their Cu and Au relatives.