Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(8): e11724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114175

RESUMO

In this study, we examined the relationship between sea surface temperature (SST) and phytoplankton abundance in coastal regions of the Brazilian South Atlantic: São Paulo, Paraná, and Santa Catarina, and the Protection Area of Southern right whales (Eubalaena australis) in Santa Catarina (APA), a conservation zone established along 130 km of coastline. Using SST and chlorophyll-a (Chl-a) data from 2002 to 2023, we found significant differences in SST between the regions, with São Paulo having the highest SST, followed by Paraná and Santa Catarina. All locations showed a consistent increase in SST over the years, with North Santa Catarina, APA and São Paulo experiencing the lowest rate of increase. Correlation analyses between SST and Chl-a revealed a stronger inverse relationship in North Santa Catarina and APA, indicating an increased response of Chl-a to SST variations in this region. The presence of protected area appears to play an essential role in reducing the negative impacts of increasing SST. Specifically, while there is a wealth of research on the consequences of global warming on diverse coastal and oceanic areas, heterogeneity among different settings persists and the causes for this necessitating attention. Our findings have implications for both localized scientific approaches and broader climate policies, emphasizing the importance of considering coastal ecosystem resilience to climate change in future conservation and adaptation strategies.

2.
Plants (Basel) ; 12(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299085

RESUMO

Pilocarpus microphyllus Stapf. ex Wardlew. (Rutaceae) is an endemic and threatened medicinal plant species from tropical Brazil. Popularly known as "jaborandi", it is the unique natural source of pilocarpine, an alkaloid used to medical treat glaucoma and xerostomia. Based on Species Distribution Models (SDMs), we modeled the suitability of P. microphyllus's geographical distribution considering three Global Circulation Models (GCMs) under two future climate change scenarios (SSP2-4.5 and SSP5-8.5). The quantitative analyses carried out using ten different SDM algorithms revealed that precipitation seasonality (Bio15) and precipitation of the driest month (Bio14) were the most important bioclimatic variables. The results evidenced four main key areas of continuous occurrence of the plant spreading diagonally over tropical Brazilian biomes (Amazon, Cerrado and Caatinga). The near-future (2020 to 2040) ensemble projections considering all GCMs and scenarios have indicated negative impacts for the potential loss or significant reduction in suitable habitats for P. microphyllus in the transition region between the Amazon and Cerrado into central and northern Maranhão state, and mainly in the Caatinga biome over the northern Piaui state. On the other hand, positive impacts of the expansion of the plant habitat suitability are projected over forest cover protected areas of the Amazon biome in the southeastern Pará state. Since the jaborandi is of socioeconomic importance for many families in the north/northeast Brazil, it is urgent to implement public policies for conservation and sustainable management, thus mitigating the impacts of global climate change.

3.
J Ethnobiol Ethnomed ; 12(1): 50, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784304

RESUMO

BACKGROUND: Climate change is altering climate patterns, mainly increasing the frequency and intensity of extreme events with potentially serious impacts on natural resources and the people that use them. Adapting to such impacts will require the integration of scientific and local (folk) knowledge, especially the first-hand experiences and perceptions of resource users such as fishers. In this study, we identify how commercial riverine fishers in the Amazon remember extreme climatic events (flood and drought) and how they face the consequences of extreme events on fish availability. METHODS: Data were collected from the main Manaus fishery harbor between June and October of 2013. Semi-structured questionnaires and a historical timeline technique were used to gather data from artisanal commercial fishers. Fishers' knowledge of extreme climate events was assessed by their "cultural consensus" for identification of event years and perceived impacts. Fishers' responses were also compared to hydrological data to test their similarity. RESULTS: There was a high level of cultural consensus among fishers about extreme events years. They were able to identify four consecutive unusual droughts, between 2009 and 2012. Elevated levels of fish mortality and decreases in the fishery were perceived as consequences of the drought events, as well as, a reduction in fish size, and disappearance of some species. Extreme flood events were associated with greater difficulties accessing fishing grounds. CONCLUSIONS: Extreme climatic events (floods and droughts) were remembered, and the recent increase in their intensity and frequency was also perceived. Moreover, extreme climate event (mainly droughts) impacts on fishery resources were also observed. Such information is potentially valuable for educational programs to further improve adaptation of local Amazonian fishing communities to future climate change, e.g. increasing local ecological knowledge using learning material based on their perception.


Assuntos
Secas , Pesqueiros , Inundações , Conhecimento , Animais , Brasil , Peixes , Humanos
4.
Proc Natl Acad Sci U S A ; 113(39): 10759-68, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27638214

RESUMO

For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Brasil , Florestas , Geografia , Produto Interno Bruto , Atividades Humanas , Humanos , Internacionalidade , Transpiração Vegetal/fisiologia , Fatores de Risco , Estações do Ano
5.
Front Public Health ; 4: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973824

RESUMO

Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat from climate change. As such, the health of the food production and processing environments in such systems merits immediate attention in research and practice.

6.
New Phytol ; 204(3): 459-473, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209030

RESUMO

The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Oceano Atlântico , Brasil , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA