Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Physiol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922907

RESUMO

Murine models lacking CLOCK/BMAL1 proteins in skeletal muscle (SkM) present muscle deterioration and mitochondria abnormalities. It is unclear whether humans with lower levels of these proteins in the SkM have similar alterations. Here we evaluated the association between BMAL1 and CLOCK protein mass with mitochondrial dynamics parameters and molecular and functional SkM quality markers in males. SkM biopsies were taken from the vastus lateralis of 16 male (non-athletes, non-obese and non-diabetic) subjects (8-9 a.m.). The morphology of mitochondria and their interaction with the sarcoplasmic reticulum (mitochondria-SR) were determined using transmission electron microscopy images. Additionally, protein abundance of the OXPHOS complex, mitochondria fusion/fission regulators, mitophagy and signalling proteins related to muscle protein synthesis were measured. To evaluate the quality of SkM, the cross-sectional area and maximal SkM strength were also measured. The results showed that BMAL1 protein mass was positively associated with mitochondria-SR distance, mitochondria size, mitochondria cristae density and mTOR protein mass. On the other hand, CLOCK protein mass was negatively associated with mitochondria-SR interaction, but positively associated with mitochondria complex III, OPA1 and DRP1 protein mass. Furthermore, CLOCK protein mass was positively associated with the protein synthesis signalling pathway (total mTOR, AKT and P70S6K protein mass) and SkM strength. These findings suggest that the BMAL1 and CLOCK proteins play different roles in regulating mitochondrial dynamics and SkM function in males, and that modulation of these proteins could be a potential therapeutic target for treating muscle diseases. KEY POINTS: In murine models, reductions in BMAL1 and CLOCK proteins lead to changes in mitochondria biology and a decline in muscle function. However, this association has not been explored in humans. We found that in human skeletal muscle, a decrease in BMAL1 protein mass is linked to smaller intermyofibrillar mitochondria, lower mitochondria cristae density, higher interaction between mitochondria and sarcoplasmic reticulum, and reduced mTOR protein mass. Additionally, we found that a decrease in CLOCK protein mass is associated with a higher interaction between mitochondria and sarcoplasmic reticulum, lower protein mass of OPA1 and DRP1, which regulates mitochondria fusion and fission, lower protein synthesis signalling pathway (mTOR, AKT and P70S6K protein mass), and decreased skeletal muscle strength. According to our findings in humans, which are supported by previous studies in animals, the mitochondrial dynamics and skeletal muscle function could be regulated differently by BMAL1 and CLOCK proteins. As a result, targeting the modulation of these proteins could be a potential therapeutic approach for treating muscle diseases and metabolic disorders related to muscle.

2.
J Exp Bot ; 75(10): 2809-2818, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38373194

RESUMO

The impact of rising global temperatures on crop yields is a serious concern, and the development of heat-resistant crop varieties is crucial for mitigating the effects of climate change on agriculture. To achieve this, a better understanding of the molecular basis of the thermal responses of plants is necessary. The circadian clock plays a central role in modulating plant biology in synchrony with environmental changes, including temperature fluctuations. Recent studies have uncovered the role of transcriptional activators of the core circadian network in plant temperature responses. This expert view highlights key novel findings regarding the role of the RVE and LNK gene families in controlling gene expression patterns and plant growth under different temperature conditions, ranging from regular diurnal oscillations to extreme stress temperatures. These findings reinforce the essential role of the circadian clock in plant adaptation to changing temperatures and provide a basis for future studies on crop improvement.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Temperatura
3.
Mol Neurobiol ; 61(8): 5216-5229, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38180613

RESUMO

Glioblastomas derived from malignant astrocytes are the most common primary tumors of the central nervous system in humans, exhibiting very bad prognosis. Treatment with surgery, radiotherapy, and chemotherapy (mainly using temozolomide), generates as much one-year survival. The circadian clock controls different aspects of tumor development, and its role in GBM is beginning to be explored. Here, the role of the canonic circadian clock gene bmal1 was studied in vivo in a nude mice model bearing human GBMs from LN229 cells xenografted orthotopically in the dorsal striatum. For that aim, a bmal1 knock-down was generated in LN229 cells by CRISPR/Cas9 gene editing tool, and tumor progression was followed in male mice by measuring survival, tumor growth, cell proliferation and prognosis with CD44 marker, as well as astrocyte activation in the tumor microenvironment with GFAP and nestin markers. Disruption of bmal1 in the tumor decreased survival, increased tumor growth and CD44 expression, worsened motor performance, as well as increased GFAP expression in astrocytes at tumor microenvironment. In addition, survival and tumor progression was not affected in mice bearing LN229 wild type GBM that underwent circadian disruption by constant light, as compared to mice synchronized to 12:12 light-dark cycles. These results consistently demonstrate in an in vivo orthotopic model of human GBM, that bmal1 has a key role as a tumor suppressor gene regulating GBM progression.


Assuntos
Fatores de Transcrição ARNTL , Relógios Circadianos , Modelos Animais de Doenças , Genes Supressores de Tumor , Glioblastoma , Camundongos Nus , Animais , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Humanos , Relógios Circadianos/genética , Masculino , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Camundongos , Proliferação de Células/genética , Microambiente Tumoral , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37815602

RESUMO

In 1976, Pittendrigh and Daan established a theoretical framework which has coordinated research on circadian clock entrainment and photoperiodism until today. The "wild clocks" approach, which concerns studying wild species in their natural habitats, has served to test their models, add new insights, and open new directions of research. Here, we review an integrated laboratory, field and modeling work conducted with subterranean rodents (Ctenomys sp.) living under an extreme pattern of natural daily light exposure. Tracking animal movement and light exposure with biologgers across seasons and performing laboratory experiments on running-wheel cages, we uncovered the mechanisms of day/night entrainment of the clock and of photoperiodic time measurement in this subterranean organism. We confirmed most of the features of Pittendrigh and Daan's models but highlighted the importance of integrating them with ecophysiological techniques, methodologies, and theories to get a full picture of the clock in the wild. This integration is essential to fully establish the importance of the temporal dimension in ecological studies and tackling relevant questions such as the role of the clock for all seasons in a changing planet.

5.
Rejuvenation Res ; 26(5): 206-213, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37694591

RESUMO

The amount of sleep needed over one's lifespan is age dependent and not sleeping enough or sleeping in excess is associated with increased morbidity and mortality. Yet, the convergent molecular mechanisms that link longevity and sleep are largely unknown. We performed a gene enrichment study that (1) identified genes associated with both longevity and sleep traits and (2) determined molecular pathways enriched among these shared genes. We manually curated two sets of genes, one associated with longevity and aging and the other with sleep traits (e.g., insomnia, narcolepsy, sleep duration, chronotype, among others), with both gene lists heavily driven by hits from recent large-scale Genome-Wide Association Studies. There were 47 overlapping genes between the gene list associated with sleep traits (1064 genes total) and the genes associated with longevity (367 genes total), indicating significantly more overlap than expected by chance. An overrepresentation analysis identified enriched pathways that suggest endocrine and epigenetic regulation as potential shared mechanisms between sleep traits and longevity. Concordantly, functional network analysis retrieved two clusters, being one associated with proteins of nuclear functions and the other, with extracellular proteins. This overlapping gene set, and the highlighted biological pathways may serve as preliminary findings for new functional investigations of sleep and longevity shared genetic mechanisms.


Assuntos
Epigênese Genética , Longevidade , Longevidade/genética , Estudo de Associação Genômica Ampla , Sono/genética
6.
Rev. colomb. anestesiol ; 51(3)sept. 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1535693

RESUMO

Introduction Children are susceptible to developing preoperative ketonemia, which can be affected by changes in the circadian rhythm and counter-regulatory hormones. It is unclear whether ketonemia depends on the timing of fasting. Objective To assess the effect of preoperative fasting time (diurnal vs. night) on the preoperative concentration of ketone bodies in children. Methods We conducted a prospective-observational clinical study between September 2020 and March 2021, including children under 48 months of age scheduled for elective surgery. Two groups were identified based on fasting time, as follows: diurnal fasting (group A, n = 40) and nocturnal fasting (group B, n = 52). Demographic data, duration of fasting, time of excess fasting, type of food intake, the concentration of ketone bodies and capillary blood glucose, level of anxiety, and dehydration were analyzed in both groups. Results Diurnal fasting was associated with higher incidence of ketonemia compared with nocturnal fasting (Group A: 62.5% (95% CI 48.1-82.0); group B: 38,5% (95% CI 26.5-52.5), P=0.02). Most of the patients exceeded the duration of fasting recommended by preoperative fasting guidelines (95.6%). The type of food eaten before surgery was significantly associated with the presence of ketonemia (P=0.01). Conclusions Preoperative ketonemia is relatively common in patients under 48 months of age, especially among those who undergo diurnal fasting compared to nocturnal fasting.


Introducción Los niños son susceptibles a desarrollar cetonemia preoperatoria que puede verse afectada por cambios en el ritmo circadiano y las hormonas contrarreguladoras. No está claro si la cetonemia depende de la hora del ayuno. Objetivo Evaluar el efecto del momento del ayuno preoperatorio (diurno vs. nocturno) sobre la concentración preoperatoria de los cuerpos cetónicos en niños. Métodos Llevamos a cabo un estudio clínico observacional entre septiembre de 2020 y marzo de 2021, en niños menores de 48 meses, programados para cirugía electiva. Se identificaron dos grupos basados en la hora del ayuno, como sigue: ayuno diurno (grupo A, n = 40) y ayuno nocturno (grupo B, n = 52). En ambos grupos se analizaron los datos demográficos, la duración del ayuno, el tiempo excesivo de ayuno, el tipo de ingesta de alimentos, la concentración de cuerpos cetónicos, la glicemia capilar, el nivel de ansiedad y la deshidratación. Resultados El ayuno diurno se asocio con una mayor incidencia de cenotemia en comparación con el ayuno nocturno (Grupo A: 62,5% (IC 95% 48,1-82,0); grupo B: 38,5% (95% CI 26.5-52.5), P=0.02). La mayoría de los pacientes excedieron el tiempo de ayuno recomendado según las guías de ayuno preoperatorio (95,6%). El tipo de alimentos ingeridos antes de la cirugía se asoció de manera importante con la presencia de cetonemia (P=0,01). Conclusiones La cetonemia preoperatoria es relativamente común en pacientes menores de 48 meses de edad, especialmente entre quienes se someten a ayuno diurno en comparación con ayuno nocturno.

7.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166853, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37611674

RESUMO

We are far behind the 2025 World Health Organization (WHO) goal of a zero increase in obesity. Close to 360 million people in Latin America and the Caribbean are overweight, with the highest rates observed in the Bahamas, Mexico, and Chile. To achieve relevant progress against the obesity epidemic, scientific research is essential to establish uniform practices in the study of obesity pathophysiology (using pre-clinical and clinical models) that ensure accuracy, reproducibility, and transcendent outcomes. The present review focuses on relevant aspects of white adipose tissue (WAT) expansion, underlying mechanisms of inefficient expandability, and its repercussion in ectopic lipid accumulation in the liver during nutritional abundance. In addition, we highlight the potential role of disrupted circadian rhythm in WAT metabolism. Since genetic factors also play a key role in determining an individual's predisposition to weight gain, we describe the most relevant genes associated with obesity in the Mexican population, underlining that most of them are related to appetite control.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Obesidade , Humanos , Reprodutibilidade dos Testes , Obesidade/genética , Adiposidade
8.
Microbiol Spectr ; 11(4): e0372722, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272789

RESUMO

In Neurospora crassa, caffeine and other methylxanthines are known to inhibit phosphodiesterase (PDE) activity, leading to augmented cAMP levels. In this organism, it has also been shown that the addition of these drugs significantly lengthens the circadian period, as seen by conidiation rhythms. Utilizing in vivo bioluminescence reporters, pharmacological inhibitors, and cAMP analogs, we revisited the effect of methylxanthines and the role of cAMP signaling in the Neurospora clockworks. We observed that caffeine, like all tested methylxanthines, led to significant period lengthening, visualized with both core-clock transcriptional and translational reporters. Remarkably, this phenotype is still observed when phosphodiesterase (PDE) activity is genetically or chemically (via 3-isobutyl-1-methylxanthine) abrogated. Likewise, methylxanthines still exert a period effect in several cAMP signaling pathway mutants, including adenylate cyclase (cr-1) and protein kinase A (PKA) (Δpkac-1) mutants, suggesting that these drugs lead to circadian phenotypes through mechanisms different from the canonical PDE-cAMP-PKA signaling axis. Thus, this study highlights the strong impact of methylxanthines on circadian period in Neurospora, albeit the exact mechanisms somehow remain elusive. IMPORTANCE Evidence from diverse organisms show that caffeine causes changes in the circadian clock, causing period lengthening. The fungus Neurospora crassa is no exception; here, several methylxanthines such as caffeine, theophylline, and aminophylline cause period lengthening in a concentration-dependent manner. Although methylxanthines are expected to inhibit phosphodiesterase activity, we were able to show by genetic and pharmacological means that these drugs exert their effects through a different mechanism. Moreover, our results indicate that increases in cAMP levels and changes in PKA activity do not impact the circadian period and therefore are not part of underlying effects of methylxanthine. These results set the stage for future analyses dissecting the molecular mechanisms by which these drugs dramatically modify the circadian period.


Assuntos
Cafeína , Neurospora crassa , Neurospora crassa/efeitos dos fármacos , Neurospora crassa/fisiologia , Ritmo Circadiano/efeitos dos fármacos , AMP Cíclico/metabolismo , Cafeína/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , 1-Metil-3-Isobutilxantina , Proteínas Quinases/metabolismo , Transdução de Sinais
9.
J Biol Rhythms ; 38(2): 131-147, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680418

RESUMO

Circadian rhythms represent an adaptive feature, ubiquitously found in nature, which grants living beings the ability to anticipate daily variations in their environment. They have been found in a multitude of organisms, ranging from bacteria to fungi, plants, and animals. Circadian rhythms are generated by endogenous clocks that can be entrained daily by environmental cycles such as light and temperature. The molecular machinery of circadian clocks includes a transcriptional-translational feedback loop that takes approximately 24 h to complete. Drosophila melanogaster has been a model organism of choice to understand the molecular basis of circadian clocks. However, alternative animal models are also being adopted, each offering their respective experimental advantages. The nematode Caenorhabditis elegans provides an excellent model for genetics and neuro-behavioral studies, which thanks to its ease of use and manipulation, as well as availability of genetic data and mutant strains, is currently used as a novel model for circadian research. Here, we aim to evaluate C. elegans as a model for chronobiological studies, focusing on its strengths and weaknesses while reviewing the available literature. Possible zeitgebers (including light and temperature) are also discussed. Determining the molecular bases and the neural circuitry involved in the central pacemaker of the C. elegans' clock will contribute to the understanding of its circadian system, becoming a novel model organism for the study of diseases due to alterations of the circadian cycle.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Ritmo Circadiano/genética , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Relógios Circadianos/genética , Temperatura
10.
Biomolecules ; 12(7)2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35883448

RESUMO

The molecular circadian clock is based on a transcriptional/translational feedback loop in which the stability and half-life of circadian proteins is of importance. Cysteine residues of proteins are subject to several redox reactions leading to S-thiolation and disulfide bond formation, altering protein stability and function. In this work, the ability of the circadian protein period 2 (PER2) to undergo oxidation of cysteine thiols was investigated in HEK-293T cells. PER2 includes accessible cysteines susceptible to oxidation by nitroso cysteine (CysNO), altering its stability by decreasing its monomer form and subsequently increasing PER2 homodimers and multimers. These changes were reversed by treatment with 2-mercaptoethanol and partially mimicked by hydrogen peroxide. These results suggest that cysteine oxidation can prompt PER2 homodimer and multimer formation in vitro, likely by S-nitrosation and disulphide bond formation. These kinds of post-translational modifications of PER2 could be part of the redox regulation of the molecular circadian clock.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Ritmo Circadiano/fisiologia , Cisteína/metabolismo , Dimerização , Oxirredução , Proteínas Circadianas Period/química , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas/metabolismo
11.
J Exp Bot ; 73(14): 4867-4885, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35439821

RESUMO

Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.


Assuntos
Portulaca , Ácido Abscísico , Dióxido de Carbono/metabolismo , Metabolismo Ácido das Crassuláceas , Citocininas , Fotossíntese/fisiologia , Portulaca/genética , Portulaca/metabolismo
12.
Front Plant Sci ; 13: 774060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222460

RESUMO

Starch is a polysaccharide that is stored to be used in different timescales. Transitory starch is used during nighttime when photosynthesis is unavailable. Long-term starch is stored to support vegetative or reproductive growth, reproduction, or stress responses. Starch is not just a reserve of energy for most plants but also has many other roles, such as promoting rapid stomatal opening, making osmoprotectants, cryoprotectants, scavengers of free radicals and signals, and reverting embolised vessels. Biotic and abiotic stress vary according to their nature, strength, duration, developmental stage of the plant, time of the day, and how gradually they develop. The impact of stress on starch metabolism depends on many factors: how the stress impacts the rate of photosynthesis, the affected organs, how the stress impacts carbon allocation, and the energy requirements involved in response to stress. Under abiotic stresses, starch degradation is usually activated, but starch accumulation may also be observed when growth is inhibited more than photosynthesis. Under biotic stresses, starch is usually accumulated, but the molecular mechanisms involved are largely unknown. In this mini-review, we explore what has been learned about starch metabolism and plant stress responses and discuss the current obstacles to fully understanding their interactions.

13.
Front Physiol ; 12: 738471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658922

RESUMO

Living organisms anticipate the seasons by tracking the proportion of light and darkness hours within a day-photoperiod. The limits of photoperiod measurement can be investigated in the subterranean rodents tuco-tucos (Ctenomys aff. knighti), which inhabit dark underground tunnels. Their exposure to light is sporadic and, remarkably, results from their own behavior of surface emergence. Thus, we investigated the endogenous and exogenous regulation of this behavior and its consequences to photoperiod measurement. In the field, animals carrying biologgers displayed seasonal patterns of daily surface emergence, exogenously modulated by temperature. In the laboratory, experiments with constant lighting conditions revealed the endogenous regulation of seasonal activity by the circadian clock, which has a multi-oscillatory structure. Finally, mathematical modeling corroborated that tuco-tuco's light exposure across the seasons is sufficient for photoperiod encoding. Together, our results elucidate the interrelationship between the circadian clock and temperature in shaping seasonal light exposure patterns that convey photoperiod information in an extreme photic environment.

14.
J Exp Bot ; 72(22): 7668-7679, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363668

RESUMO

Knowledge about environmental and biological rhythms can lead to more sustainable agriculture in a climate crisis and resource scarcity scenario. When rhythms are considered, more efficient and cost-effective management practices can be designed for food production. The circadian clock is used to anticipate daily and seasonal changes, organize the metabolism during the day, integrate internal and external signals, and optimize interaction with other organisms. Plants with a circadian clock in synchrony with the environment are more productive and use fewer resources. In medicine, chronotherapy is used to increase drug efficacy, reduce toxicity, and understand the health effects of circadian clock disruption. Here, I show evidence of why circadian biology can be helpful in agriculture. However, as evidence is scattered among many areas, they frequently lack field testing, integrate poorly with other rhythms, or suffer inconsistent results. These problems can be mitigated if researchers of different areas start collaborating under a new study area-circadian agriculture.


Assuntos
Relógios Circadianos , Agricultura , Ritmo Circadiano , Produtos Agrícolas
15.
New Phytol ; 232(4): 1738-1749, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312886

RESUMO

Most research in plant chronobiology has been done in laboratory conditions. However, laboratories usually fail to mimic natural conditions and their slight fluctuations, highlighting or obfuscating rhythmicity. High-density crops, such as sugarcane (Saccharum hybrid), generate field microenvironments with specific light and temperature regimes resulting from mutual shading. We measured the metabolic and transcriptional rhythms in the leaves of 4-month-old (4 mo) and 9 mo field-grown sugarcane. Most of the assayed rhythms in 9 mo sugarcane peaked >1 h later than in 4 mo sugarcane, including rhythms of the circadian clock gene, LATE ELONGATED HYPOCOTYL (LHY). We hypothesized that older sugarcane perceives dawn later than younger sugarcane as a consequence of self-shading. As a test, we measured LHY rhythms in plants on the east and the west sides of a field. We also tested if a wooden wall built between lines of sugarcane plants changed their rhythms. The LHY peak was delayed in the plants in the west of the field or beyond the wall; both shaded at dawn. We conclude that plants in the same field may have different phases resulting from field microenvironments, impacting important agronomical traits, such as flowering time, stalk weight and number.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo , Fenótipo , Folhas de Planta
16.
New Phytol ; 231(5): 1875-1889, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34053087

RESUMO

Adjustment to energy starvation is crucial to ensure growth and survival. In Arabidopsis thaliana (Arabidopsis), this process relies in part on the phosphorylation of the circadian clock regulator bZIP63 by SUCROSE non-fermenting RELATED KINASE1 (SnRK1), a key mediator of responses to low energy. We investigated the effects of mutations in bZIP63 on plant carbon (C) metabolism and growth. Results from phenotypic, transcriptomic and metabolomic analysis of bZIP63 mutants prompted us to investigate the starch accumulation pattern and the expression of genes involved in starch degradation and in the circadian oscillator. bZIP63 mutation impairs growth under light-dark cycles, but not under constant light. The reduced growth likely results from the accentuated C depletion towards the end of the night, which is caused by the accelerated starch degradation of bZIP63 mutants. The diel expression pattern of bZIP63 is dictated by both the circadian clock and energy levels, which could determine the changes in the circadian expression of clock and starch metabolic genes observed in bZIP63 mutants. We conclude that bZIP63 composes a regulatory interface between the metabolic and circadian control of starch breakdown to optimize C usage and plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Proteínas Serina-Treonina Quinases/metabolismo , Açúcares
17.
Physiol Behav ; 237: 113420, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878315

RESUMO

Light is the most powerful temporal cue that entrains physiology and behavior through modulation of the suprachiasmatic nucleus (SCN) of the hypothalamus. However, on a daily basis, individuals face a combination of light and several non-photic cues, such as social interaction. In order to investigate whether SCN activity and SCN-driven rhythms are altered by social interaction, adult male C57BLJ/6 mice were maintained in groups of 3-4 animals per cage or 1 animal per cage (socially isolated) under 12:12 h / light:dark (LD) cycles or constant darkness (DD). Analysis of the two anatomical subdivisions (ventral, v and dorsal, d) of the medial SCN revealed an effect of housing conditions on the d-SCN but not on the v-SCN on the number of c-Fos immunoreactive (ir) neurons. As such, 2 h after the light-phase onset d-SCN c-Fos-ir number was lower in single-housed mice under LD. Importantly, under DD there were no effect of housing conditions in the number of c-Fos-ir SCN neurons. Social isolation increased the amplitude and strength of SCN-driven rhythm of body temperature (Tc) entrained to LD and it advanced its onset, uncoupling with spontaneous locomotor activity (SLA) rhythm, without altering endogenous Tc and SLA rhythms expressed under DD. Associated with reduced Tc in the light phase, single-housed mice showed reduced body weight. However, these phenotypes were not accompanied by changes in the number of c-Fos-ir neurons in the preoptic area (POA), which are known to regulate energy metabolism and Tc. Altogether, these results imply that the social interaction masking effect on the d-SCN is added to that of light stimulus, in order to achieve full c-Fos expression in the SCN, which, in turn seems to be required to maintain daily-phase coherence between the photo-entrained rhythms of Tc and SLA. There might be an inter-relationship between masking (social interaction) and entrainment stimulus (light) that impacts the circadian parameters of the photo-entrained Tc rhythm. As such, in the absence of social interactions a more robust Tc rhythm is shown. This inter-relationship seems to occur in the dorsal subdivision of the SCN but not in the POA.


Assuntos
Ritmo Circadiano , Interação Social , Animais , Escuridão , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Supraquiasmático
18.
G3 (Bethesda) ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33792687

RESUMO

Eukaryotic circadian oscillators share a common circuit architecture, a negative feedback loop in which a positive element activates the transcription of a negative one that then represses the action of the former, inhibiting its own expression. While studies in mammals and insects have revealed additional transcriptional inputs modulating the expression of core clock components, this has been less characterized in the model Neurospora crassa, where the participation of other transcriptional components impacting circadian clock dynamics remains rather unexplored. Thus, we sought to identify additional transcriptional regulators modulating the N. crassa clock, following a reverse genetic screen based on luminescent circadian reporters and a collection of transcription factors (TFs) knockouts, successfully covering close to 60% of them. Besides the canonical core clock components WC-1 and -2, none of the tested transcriptional regulators proved to be essential for rhythmicity. Nevertheless, we identified a set of 23 TFs that when absent lead to discrete, but significant, changes in circadian period. While the current level of analysis does not provide mechanistic information about how these new players modulate circadian parameters, the results of this screen reveal that an important number of light and clock-regulated TFs, involved in a plethora of processes, are capable of modulating the clockworks. This partial reverse genetic clock screen also exemplifies how the N. crassa knockout collection continues to serve as an expedite platform to address broad biological questions.


Assuntos
Relógios Circadianos , Neurospora crassa , Neurospora crassa/metabolismo , Relógios Circadianos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
19.
Chronobiol Int ; 38(7): 994-1001, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33771062

RESUMO

The circadian clock of mosquitoes can influence physiological and behavioral processes linked to disease transmission. Currently, we know how clock genes are expressed in the head of the Aedes aegypti in different light and temperature regimens, but we still do not know anything about the expression of these genes in the body. The present work aims to contribute to this understanding. We observed that the expression of clock genes in the body of Aedes can be different from that in the head. Additionally, we found that temperature cycles have greater influence on the clock genes of the body of Aedes than light/dark cycles.


Assuntos
Aedes , Relógios Circadianos , Aedes/genética , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fotoperíodo , Temperatura
20.
FASEB J ; 35(2): e21231, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428275

RESUMO

Tumors of the nervous system including glioblastoma multiforme (GBM) are the most frequent and aggressive form of brain tumors; however, little is known about the impact of the circadian timing system on the formation, growth, and treatment of these tumors. We investigated day/night differences in tumor growth after injection of A530 glioma cells isolated from malignant peripheral nerve sheath tumor (MPNSTs) of NPcis (Trp53+/- ; Nf1+/- ) mice. Synchronized A530 cell cultures expressing typical glial markers were injected at the beginning of the day or night into the sciatic nerve zone of C57BL/6 mice subject to a 12:12 hours light/dark (LD) cycle or after being released to constant darkness (DD). Tumors generated in animals injected early at night in the LD cycle or in DD showed higher growth rates than in animals injected diurnally. No differences were found when animals were injected at the same time with cultures synchronized 12 hours apart. Similar experiments performed with B16 melanoma cells showed higher tumor growth rates in animals injected at the beginning of the night compared to those injected in the daytime. A higher tumor growth rate than that in controls was observed when mice were injected with knocked-down clock gene Bmal1 cells. Finally, when we compared day/night administration of different doses of the proteasome inhibitor Bortezomib (0.5-1.5 mg/kg) in tumor-bearing animals, we found that low-dose chemotherapy displayed higher efficacy when administered at night. Results suggest the existence of a precise temporal control of tumor growth and of drug efficacy in which the host state and susceptibility are critical.


Assuntos
Neoplasias Encefálicas/patologia , Ritmo Circadiano , Glioblastoma/patologia , Fotoperíodo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Fatores de Transcrição ARNTL/genética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Bortezomib/administração & dosagem , Bortezomib/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Esquema de Medicação , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurofibromina 1/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA