RESUMO
Chromosomal polymorphism is a significant aspect of population genetics, influencing the adaptation and evolution of species. In Rineloricaria lanceolata, a Neotropical fish species, chromosomal polymorphism has been observed, yet the underlying mechanisms and evolutionary implications remain poorly understood. This article aims to investigate the chromosomal polymorphism in Rineloricaria lanceolata, focusing on elucidating the meiotic behavior of karyotypic variants and tracing the phylogenetic origins of this polymorphism within the genus. By employing molecular markers and cytogenetic techniques, we aim to uncover the mechanisms driving chromosomal rearrangements and their potential role in speciation and adaptation. Understanding the genetic basis of chromosomal polymorphism in R. lanceolata not only contributes to our knowledge of species evolution but also holds implications for the conservation of genetic diversity within this vulnerable group of Neotropical fishes.
RESUMO
The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.
Assuntos
Peixes-Gato , Cariótipo , Repetições de Microssatélites , Animais , Peixes-Gato/genética , Peixes-Gato/classificação , DNA Ribossômico/genética , Evolução Molecular , Filogenia , Heterocromatina/genética , RNA Ribossômico 5S/genéticaRESUMO
INTRODUCTION: Its wide karyotypic variation characterizes the genus Ctenomys, and in Brazil, the genus is distributed in the country's southern, Midwest, and northern regions. Recently, populations of Ctenomys have been found in the Midwest and northern Brazil, with two new lineages named C. sp. "xingu" and C. sp. "central." METHODS: This work combines classical cytogenetic and molecular analyses to provide new chromosomal information on the boliviensis group distributed in northern and Midwestern Brazil. This includes the validation of the karyotype of C. bicolor and C. nattereri and the description of the karyotype of C. sp. "xingu" and C. sp. "central." RESULTS: We found three different karyotypes: 2n = 40 for C. bicolor; 2n = 36 for C. nattereri, and specimens from a locality belonging to C. sp. "central"; 2n = 34 for the lineage C. sp. "xingu" and specimens from a locality belonging to C. sp. "central." Furthermore, GTG banding revealed homologous chromosomes between species/lineages and allowed the identification of the rearrangements that occurred, which proved the occurrence of fissions. CONCLUSION: Considering our results on the variation of 2n in the boliviensis group, we found two possibilities: the first, deduced by parsimony, is that 2n = 36 appeared initially, and two fissions produced gave rise to 2n = 40, and an independent fusion gave rise to 2n = 34 from 2n = 36; moreover, the second explanation is that all karyotypes arose independently.
Assuntos
Cariótipo , Roedores , Animais , Brasil , Roedores/genética , Roedores/classificação , Cariotipagem , Masculino , Bandeamento Cromossômico , Feminino , Cromossomos de Mamíferos/genética , FilogeniaRESUMO
Evaluating domestication signatures beyond model organisms is essential for a thorough understanding of the genotype-phenotype relationship in wild and human-related environments. Structural variations (SVs) can significantly impact phenotypes playing an important role in the physiological adaptation of species to different niches, including during domestication. A detailed characterization of the fitness consequences of these genomic rearrangements, however, is still limited in non-model systems, largely due to the paucity of direct comparisons between domesticated and wild isolates. Here, we used a combination of sequencing strategies to explore major genomic rearrangements in a Lachancea cidri yeast strain isolated from cider (CBS2950) and compared them to those in eight wild isolates from primary forests. Genomic analysis revealed dozens of SVs, including a large reciprocal translocation (~16 kb and 500 kb) present in the cider strain, but absent from all wild strains. Interestingly, the number of SVs was higher relative to single-nucleotide polymorphisms in the cider strain, suggesting a significant role in the strain's phenotypic variation. The set of SVs identified directly impacts dozens of genes and likely underpins the greater fermentation performance in the L. cidri CBS2950. In addition, the large reciprocal translocation affects a proline permease (PUT4) regulatory region, resulting in higher PUT4 transcript levels, which agrees with higher ethanol tolerance, improved cell growth when using proline, and higher amino acid consumption during fermentation. These results suggest that SVs are responsible for the rapid physiological adaptation of yeast to a human-related environment and demonstrate the key contribution of SVs in adaptive fermentative traits in non-model species.IMPORTANCEThe exploration of domestication signatures associated with human-related environments has predominantly focused on studies conducted on model organisms, such as Saccharomyces cerevisiae, overlooking the potential for comparisons across other non-Saccharomyces species. In our research, employing a combination of long- and short-read data, we found domestication signatures in Lachancea cidri, a non-model species recently isolated from fermentative environments in cider in France. The significance of our study lies in the identification of large array of major genomic rearrangements in a cider strain compared to wild isolates, which underly several fermentative traits. These domestication signatures result from structural variants, which are likely responsible for the phenotypic differences between strains, providing a rapid path of adaptation to human-related environments.
Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/genética , Domesticação , Saccharomycetales/genética , Bebidas Alcoólicas , Translocação GenéticaRESUMO
The remarkable fish biodiversity encompasses also great sex chromosome variability. Harttia catfish belong to Neotropical models for karyotype and sex chromosome research. Some species possess one of the three male-heterogametic sex chromosome systems, XY, X1X2Y or XY1Y2, while other members of the genus have yet uncharacterized modes of sex determination. Particularly the XY1Y2 multiple sex chromosome system shows a relatively low incidence among vertebrates, and it has not been yet thoroughly investigated. Previous research suggested two independent X-autosome fusions in Harttia which led to the emergence of XY1Y2 sex chromosome system in three of its species. In this study, we investigated evolutionary trajectories of synteny blocks involved in this XY1Y2 system by probing six Harttia species with whole chromosome painting (WCP) probes derived from the X (HCA-X) and the chromosome 9 (HCA-9) of H. carvalhoi. We found that both painting probes hybridize to two distinct chromosome pairs in Amazonian species, whereas the HCA-9 probe paints three chromosome pairs in H. guianensis, endemic to Guyanese drainages. These findings demonstrate distinct evolutionary fates of mapped synteny blocks and thereby elevated karyotype dynamics in Harttia among the three evolutionary clades.
RESUMO
Miniature refers to species with extraordinarily small adult body size when adult and can be found within all major metazoan groups. It is considered that miniature species have experienced severe alteration of numerous morphological traits during evolution. For a variety of reasons, including severe labor concerns during collecting, chromosomal acquisition, and taxonomic issues, miniature fishes are neglected and understudied. Since some available studies indicate possible relationship between diploid chromosome number (2n) and body size in fishes, we aimed to study one of the smallest Neotropical fish Nannostomus anduzei (Teleostei, Characiformes, Lebiasinidae), using both conventional (Giemsa staining, C-banding) and molecular cytogenetic methods (FISH mapping of rDNAs, microsatellites, and telomeric sequences). Our research revealed that N. anduzei possesses one of the lowest diploid chromosome numbers (2n = 22) among teleost fishes, and its karyotype is entirely composed of large metacentric chromosomes. All chromosomes, except for pair number 11, showed an 18S rDNA signal in the pericentromeric region. 5S rDNA signals were detected in the pericentromeric regions of chromosome pair number 1 and 6, displaying synteny to 18S rDNA signals. Interstitial telomeric sites (ITS) were identified in the centromeric region of pairs 6 and 8, indicating that centric fusions played a significant role in karyotype evolution of studied species. Our study provides further evidence supporting the trend of diploid chromosome number reduction along with miniaturization of adult body size in fishes.
Assuntos
Caraciformes , Animais , Caraciformes/genética , Cariótipo , Cariotipagem , Telômero/genética , DNA Ribossômico/genéticaRESUMO
Cytogenetic studies have enabled the characterization of the chromosomal macrostructure and microstructure and have contributed to the understanding of the evolution of wasp karyotypes. However, studies on Eumeninae solitary wasps are scarce. In this study, we characterized the karyotype of Ancistrocerus flavomarginatus (Brèthes, 1906) and compared it with previous data from other Ancistrocerus (Wesmael, 1836) species to shed light on the chromosomal diversity of the genus. A chromosome number of 2n = 24 in females and n = 12 in males was observed. Comparing the A. flavomarginatus karyotype with that of another Ancistrocerus species showed variations in the morphology of some chromosomal pairs. The presence of two larger chromosome pairs, almost entirely heterochromatic, and the predominance of subtelocentric chromosomes with heterochromatic short arms in A. flavomarginatus support the occurrence of fissions in Ancistrocerus. A single site of ribosomal genes was observed in A. flavomarginatus, in addition to a size polymorphism of these rDNA clusters between the homologues of some analyzed females. This polymorphism may originate from duplications/deletions due to unequal crossing-over or amplification via transposable elements. The (GA)15 microsatellite is located exclusively in euchromatic regions. Our data show that different rearrangements seem to shape chromosomal evolution in Ancistrocerus species.
Assuntos
Vespas , Animais , Masculino , Feminino , Vespas/genética , Cariótipo , CariotipagemRESUMO
Although Astyanax bimaculatus is the most representative species of the genus in the Amazon region, there are no cytogenetic studies of A. bimaculatus species in Amazon region. Thus, we aimed to analyse the chromosome complements of specimens from this area using classic and molecular cytogenetic approaches. The results revealed the existence of a distinct cytotype and this is the first report of the occurrence of a B microchromosome in the species. Overall, these data indicate that the karyotypic evolution of this species is complex, involving the occurrence of chromosomal rearrangements.
Assuntos
Characidae , Caraciformes , Animais , Caraciformes/genética , Cariótipo , Cariotipagem , Ploidias , BrasilRESUMO
The Neotropical underground rodents of the genus Ctenomys (Rodentia: Ctenomyidae) comprise about 65 species, which harbor the most significant chromosomal variation among mammals (2n = 10 to 2n = 70). Among them, C. minutus stands out with 45 different cytotypes already identified, among which, seven parental ones, named A to G, are parapatrically distributed in the coastal plains of Southern Brazil. Looking for possible causes that led to such extensive karyotype diversification, we performed chromosomal mapping of different repetitive DNAs, including microsatellites and long interspersed element-1 (LINE-1) retrotransposons in the seven parental cytotypes. Although microsatellites were found mainly in the centromeric and telomeric regions of the chromosomes, different patterns occur for each cytotype, thus revealing specific features. Likewise, the LINE-1-like retrotransposons also showed a differential distribution for each cytotype, which may be linked to stochastic loss of LINE-1 in some populations. Here, microsatellite motifs (A)30, (C)30, (CA)15, (CAC)10, (CAG)10, (CGG)10, (GA)15, and (GAG)10 could be mapped to fusion of chromosomes 20/17, fission and inversion in the short arm of chromosome 2, fusion of chromosomes 23/19, and different combinations of centric and tandem fusions of chromosomes 22/24/16. These data provide evidence for a correlation between repetitive genomic content and localization of evolutionary breakpoints and highlight their direct impact in promoting chromosomal rearrangements.
RESUMO
Cytogenetic data showed the enrichment of repetitive DNAs in chromosomal rearrangement points between closely related species in armored catfishes. Still, few studies integrated cytogenetic and genomic data aiming to identify their prone-to-break DNA sites. Here, we aimed to obtain the repetitive fraction in Rineloricaria latirostris to recognize the microsatellite and homopolymers flanking the regions previously described as chromosomal fusion points. The results indicated that repetitive DNAs in R. latirostris are predominantly DNA transposons, and considering the microsatellite and homopolymers, A/T-rich expansions were the most abundant. The in situ localization demonstrated the A/T-rich repetitive sequences were scattered on the chromosomes, while A/G-rich microsatellite units were accumulated in some regions. The DNA transposon hAT, the 5S rDNA, and 45S rDNA (previously identified in Robertsonian fusion points in R. latirostris) were clusterized with some microsatellites, especially (CA)n, (GA)n, and poly-A, which were also enriched in regions of chromosomal fusions. Our findings demonstrated that repetitive sequences such as rDNAs, hAT transposons, and microsatellite units flank probable evolutionary breakpoint regions in R. latirostris. However, due to the sequence unit homologies in different chromosomal sites, these repeat DNAs only may facilitate chromosome fusion events in R. latirostris rather than working as a double-strand breakpoint site.
Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Mapeamento Cromossômico/métodos , Cromossomos , Elementos de DNA Transponíveis , DNA Ribossômico/genética , Evolução Molecular , Repetições de Microssatélites , RNA Ribossômico 5S/genéticaRESUMO
Ceratocystis fimbriata is an important pathogen that causes wilt in several plant species. Despite the importance of this pathogen, knowledge about its karyotypic polymorphism and genomic architecture is limited. The main objective of this study was to investigate the karyotype of isolates of the C. fimbriata species complex from different host plants and geographical origins in Brazil. First, the identity of the isolates was confirmed conducting multilocus sequence analysis (MLSA) phylogeny using ß-tubulin (TUBB), translation elongation factor 1α (TEF-1α) and mating-type (MAT1 and MAT2) gene sequences. To investigate the chromosomal polymorphism, two conditions of pulsed-field gel electrophoresis (PFGE) were used and the karyotypes of the isolates obtained. The retrotransposon-microsatellite amplified polymorphism (REMAP) molecular marker was utilized to assess the genetic variability among isolates. In the MLSA utilizing the concatenated gene sequences, Ceratocystis cacaofunesta and C. fimbriata formed separate clades, but considerable variation among C. fimbriata isolates was observed. Polymorphism in chromosome number and size was found, indicating the existence of genomic differences among isolates and occurrence of chromosomal rearrangements in the species complex. The number of chromosomes varied from seven to nine and the estimated minimum chromosome sizes were estimated to be between 2.7 and 6.0 Mbp. Small polymorphic chromosomes ranging from 1.2 to 1.8 Mbp were observed in all isolates, raising the hypothesis that they could be supernumerary chromosomes. REMAP analysis revealed a high genetic variability and that isolates from the same host tend to group together in a same cluster. Our results bring new insights into the chromosomal diversity and genome organization of the C. fimbriata complex.
Assuntos
Ascomicetos , Brasil , Ceratocystis , Cromossomos , DNA Fúngico/genética , Variação Genética/genética , Doenças das Plantas/genéticaRESUMO
Structural chromosomal rearrangements result from different mechanisms of formation, usually related to certain genomic architectural features that may lead to genetic instability. Most of these rearrangements arise from recombination, repair, or replication mechanisms that occur after a double-strand break or the stalling/breakage of a replication fork. Here, we review the mechanisms of formation of structural rearrangements, highlighting their main features and differences. The most important mechanisms of constitutional chromosomal alterations are discussed, including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). Their involvement in chromoanagenesis and in the formation of complex chromosomal rearrangements, inverted duplications associated with terminal deletions, and ring chromosomes is also outlined. We reinforce the importance of high-resolution analysis to determine the DNA sequence at, and near, their breakpoints in order to infer the mechanisms of formation of structural rearrangements and to reveal how cells respond to DNA damage and repair broken ends.
RESUMO
Allopatry is generally considered to be one of the main contributors to the remarkable Neotropical biodiversity. However, the role of chromosomal rearrangements including neo-sex chromosomes for genetic diversity is still poorly investigated and understood. Here, we assess the genetic divergence in five Pyrrhulina species using population genomics and combined the results with previously obtained cytogenetic data, highlighting that molecular genetic diversity is consistent with their chromosomal features. The results of a principal coordinate analysis (PCoA) indicated a clear difference among all species while showing a closer relationship of the ones located in the same geographical region. This was also observed in genetic structure analyses that only grouped P. australis and P. marilynae, which were also recovered as sister species in a species tree analysis. We observed a contradictory result for the relationships among the three species from the Amazon basin, as the phylogenetic tree suggested P. obermulleri and P. semifasciata as sister species, while the PCoA showed a high genetic difference between P. semifasciata and all other species. These results suggest a potential role of sex-related chromosomal rearrangements as reproductive barriers between these species.
RESUMO
Cytogenetic studies on fungus-farming ants have shown remarkable karyotype diversity, suggesting different chromosomal rearrangements involved in karyotype evolution in some genera. A notable cytogenetic characteristic in this ant group is the presence of GC-rich heterochromatin in the karyotypes of some ancient and derivative species. It was hypothesized that this GC-rich heterochromatin may have a common origin in fungus-farming ants, and the increase in species studied is important for understanding this question. In addition, many genera within the subtribe Attina have few or no cytogenetically studied species; therefore, the processes that shaped their chromosomal evolution remain obscure. Thus, in this study, we karyotyped, through classical and molecular cytogenetic techniques, the fungus-farming ants Cyphomyrmextransversus Emery, 1894, Sericomyrmexmaravalhas Jesovnik et Schultz, 2017, and Mycetomoelleriusrelictus (Borgmeier, 1934), to provide insights into the chromosomal evolution in these genera and to investigate the presence the GC-rich heterochromatin in these species. Cyphomyrmextransversus (2n = 18, 10m + 2sm + 6a) and S.maravalhas (2n = 48, 28m + 20sm) showed karyotypes distinct from other species from their genera. Mycetomoelleriusrelictus (2n = 20, 20m) presented the same karyotype as the colonies previously studied. Notably, C.transversus presented the lowest chromosomal number for the genus and a distinct karyotype from the other two previously observed for this species, showing the existence of a possible species complex and the need for its taxonomic revision. Chromosomal banding data revealed GC-rich heterochromatin in all three species, which increased the number of genera with this characteristic, supporting the hypothesis of a common origin of GC-rich heterochromatin in Attina. Although a single chromosomal pair carries rDNA genes in all studied species, the positions of these rDNA clusters varied. The rDNA genes were located in the intrachromosomal region in C.transversus and M.relictus, and in the terminal region of S.maravalhas. The combination of our molecular cytogenetic data and observations from previous studies corroborates that a single rDNA site located in the intrachromosomal region is a plesiomorphic condition in Attina. In addition, cytogenetic data obtained suggest centric fission events in Sericomyrmex Mayr, 1865, and the occurrence of inversions as the origin of the location of the ribosomal genes in M.relictus and S.maravalhas. This study provides new insights into the chromosomal evolution of fungus-farming ants.
RESUMO
Eumeninae represents the largest subfamily within Vespidae, with 3,600 species described. Of these, only 18 have been cytogenetically analysed. In the present study, we used both classical and molecular techniques to characterise and compare the karyotypes of 3 Eumeninae species, namely, Ancistrocerus sp., Pachodynerus grandis, and Pachodynerus nasidens. Ancistrocerus sp. presented a haploid chromosome number of n = 12, with the first 2 chromosomes of the karyotype being almost entirely heterochromatic and much larger than the remaining chromosomes. The 2 Pachodynerus species presented the same chromosome number (n = 11 and 2n = 22) but displayed different karyotypic formulae. Additionally, chromosomal polymorphisms were observed in the analysed P. nasidens female. In the 3 species, heterochromatin was located in one of the chromosome arms. Fluorochrome staining revealed a balanced composition of AT and GC bases within the chromatin for each of the 3 species, except for few regions that were visibly GC-rich. All species had a single 18S rDNA site that co-localised with GC-rich regions; however, this localisation varied from species to species and not all GC-rich regions corresponded to ribosomal genes. Based on the cytogenetic data obtained here, we discuss the possible numerical/structural rearrangements that may be involved in the karyotypic evolution of the 3 studied species. In addition to the first description of the molecular cytogenetic characteristics of the Eumeninae subfamily and the genus Pachodynerus, this study also provides a relevant contribution towards the discussion of chromosomal evolution in Eumeninae wasps.
Assuntos
Cromossomos de Insetos/genética , Análise Citogenética/métodos , RNA Ribossômico 18S/genética , Vespas/genética , Animais , Bandeamento Cromossômico , Feminino , Heterocromatina/genética , Hibridização in Situ Fluorescente/métodos , Cariótipo , Masculino , Especificidade da Espécie , Vespas/classificaçãoRESUMO
Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.
Assuntos
Phaseolus , Vigna , Cromossomos de Plantas/genética , Phaseolus/genética , Sintenia , Translocação Genética , Vigna/genéticaRESUMO
Farlowella is the second richest genus in Loricariinae, broadly distributed in freshwater streams and rivers of South America. In this article, we aimed to expand on the cytogenetic and molecular data available for two allopatric populations of Farlowella hahni. Both populations had diploid chromosome number 58, but with karyotype differences, indicative of chromosomal rearrangements. C-banding showed large heterochromatic blocks at telomeric regions in acrocentric chromosomes in both populations. Fluorescence in situ hybridization (FISH) revealed a single 18S rDNA site in both populations and a single 5S rDNA site for individuals from lower Paraná River basin (native region) and multiple 5S rDNA sites for individuals from upper Paraná River basin (non-native region). Mitochondrial sequence analyses did not separate the two F. hahni populations. The cytogenetic and molecular data obtained are relevant in a preliminary study and suggested the existence of cryptic diversity and the hypothesis that at least two Farlowella lineages may coexist in the Paraná basin.
Assuntos
Peixes-Gato/genética , Cromossomos , Citocromos b/análise , Análise Citogenética/veterinária , Proteínas de Peixes/análise , Variação Genética , Distribuição Animal , Animais , Feminino , MasculinoRESUMO
Harttia comprises an armored catfish genus endemic to the Neotropical region, including 27 valid species with low dispersion rates that are restricted to small distribution areas. Cytogenetics data point to a wide chromosomal diversity in this genus due to changes that occurred in isolated populations, with chromosomal fusions and fissions explaining the 2n number variation. In addition, different multiple sex chromosome systems and rDNA loci location are also found in some species. However, several Harttia species and populations remain to be investigated. In this study, Harttia intermontana and two still undescribed species, morphologically identified as Harttia sp. 1 and Harttia sp. 2, were cytogenetically analyzed. Harttia intermontana has 2n = 52 and 2n = 53 chromosomes, while Harttia sp. 1 has 2n = 56 and 2n = 57 chromosomes in females and males, respectively, thus highlighting the occurrence of an XX/XY1Y2 multiple sex chromosome system in both species. Harttia sp. 2 presents 2n = 62 chromosomes for both females and males, with fission events explaining its karyotype diversification. Chromosomal locations of the rDNA sites were also quite different among species, reinforcing that extensive rearrangements had occurred in their karyotype evolution. Comparative genomic hybridization (CGH) experiments among some Harttia species evidenced a shared content of the XY1Y2 sex chromosomes in three of them, thus pointing towards their common origin. Therefore, the comparative analysis among all Harttia species cytogenetically studied thus far allowed us to provide an evolutionary scenario related to the speciation process of this fish group.
Assuntos
Peixes-Gato/genética , Cromossomos Sexuais , Animais , Hibridização Genômica Comparativa , DNA Ribossômico , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Cariótipo , Masculino , América do Sul , Telômero/genéticaRESUMO
The family Aspredinidae comprises a clade of complex systematic relationships, both from molecular and morphological approaches. In this study, conventional and molecular cytogenetic studies coupled with nucleotide sequencing were performed in 6 Aspredininae species (Amaralia hypsiura, Bunocephalus cf. aloikae, Bunocephalus amaurus, Bunocephalus aff. coracoideus, Bunocephalus verrucosus, and Platystacus cotylephorus) from different locations of the Amazon hydrographic basin. Our results showed highly divergent diploid numbers (2n) among the species, ranging from 49 to 74, including the occurrence of an XX/X0 sex chromosome system. A neighbor-joining phylogram based on the cytochrome c oxidase I (COI) showed that Bunocephalus coracoideus is not a monophyletic clade, but closely related to B. verrucosus. The karyotypic data associated with COI suggest an ancestral karyotype for Aspredinidae with a reduced 2n, composed of bi-armed chromosomes and a trend toward chromosomal fissions resulting in higher diploid number karyotypes, mainly composed of acrocentric chromosomes. Evolutionary relationships were discussed under a phylogenetic context with related species from different Siluriformes families. The karyotype features and chromosomal diversity of Aspredinidae show an amazing differentiation, making this family a remarkable model for investigating the evolutionary dynamics in siluriforms as well as in fish as a whole.
Assuntos
Peixes-Gato/genética , Cromossomos/genética , Animais , Evolução Biológica , Brasil , Peixes-Gato/classificação , Cromossomos/ultraestrutura , Código de Barras de DNA Taxonômico , DNA Ribossômico/genética , Diploide , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Cromossomos Sexuais/genética , Cromossomos Sexuais/ultraestrutura , Especificidade da EspécieRESUMO
Electric fish of the order Gymnotiformes are endemic to the Neotropical region, and their highest diversity is observed in the Amazon region. The family Gymnotidae, which consists of the genera Electrophorus and Gymnotus, is a natural group and is located at the base of the phylogeny of the order. Gymnotus is a widely distributed and specious genus with high karyotypic diversity, especially concerning to the diploid number and the locations of repetitive sequences. Our karyotyping results in five species of the family Gymnotidae (Gymnotus ucamara, Gymnotus cf. stenoleucus, Gymnotus cf. pedanopterus, Gymnotus mamiraua, and Gymnotus carapo "Maranhão") corroborate the proposal of plasticity of the diploid number in this group. Moreover, in this study, we propose that the 5S ribosomal DNA (rDNA) sequences were species-specific markers that act as a potential biogeographical marker for the genus. Besides, the sequence's location, particularly in G. mamiraua from Central Amazon, shows a close relationship with 5S of the Gymnotus species, with 54 chromosomes, from the Paraná-Paraguay basin in the Center-South of Brazil. Considering that the ancestral diploid number for Gymnotidae is 52 chromosomes, we also suggest that the trend in the family is toward a decrease in the chromosome number. However, the carapo clade stands out in this regard, with an increase and a decrease in chromosome number; this pattern may be reinforced with the ecologic behaviors and the geodispersal patterns of this clade.