Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 231: 122413, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965053

RESUMO

Sulfide anion is a highly toxic and corrosive compound and its presence above the threshold concentrations (i.e. µmol L-1) in freshwaters may indicate environmental pollution. Besides, the increase in sulfide concentration results in modifications of the organoleptic proprieties of water and air. Many analytical methodologies have been designed for aqueous sulfide quantification, however, due to the high reactivity and instability of sulfide, the pursue of a simple, sensitive, selective, and portable analytical method is still a current demand. In this study, an indirect electrochemical method for the determination of sulfide based on its interaction with a palladium complex - bis(2-aminobenzoate) palladium(II) - acting as a selective chemosensor is described. The reaction leads to the demasking of the electroactive ligand 2-aminobenzoic acid (i.e. anthranilic acid) and square wave voltammetry is employed to monitor its concentration using a glassy carbon electrode (GCE). Experimental conditions were optimized and the reaction was performed in Britton-Robinson (BR) buffer at pH 5 for 4 min, providing the higher magnitude of the analytical signal. A linear relation (r2 > 0.99) from 3 to 30 µmol L-1 of sulfide was obtained with a limit of detection of 0.10 µmol L-1. Recovery experiments using freshwater samples spiked with sulfide revealed overall satisfactory results for the limit concentration levels permitted by regulatory agencies. Therefore, the proposed methodology shows advantages in terms of portability, selectivity, sensitivity, low-cost, and easiness-to-use enabling monitoring of sulfide in a variety of waters.

2.
Magn Reson Chem ; 55(1): 22-28, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27668407

RESUMO

Untargeted strategies have changed the rules of the game in complex mixture analysis, introducing an amazing potential for medical and biological applications that is just starting to be tapped. But with great power come great challenges; although untargeted mixture analysis opens the road for many exciting possibilities, the road is still full of perils. On the one hand, this article highlights some of the difficulties that need to be sorted for mixture analysis by NMR to fulfill its potential, along with insight on how they may be managed. Highlighted key points include the need for 'computer friendly' solutions for sharing data, experimental design and algorithm to facilitate the steady growth of knowledge and modeling ability in the field, and the need for large-scale studies to improve confidence in newly identified biomarkers. On the other hand, the second part of this article presents some breakthroughs in NMR experiments that, when combined, may modify the landscape of mixture analysis. Copyright © 2016 John Wiley & Sons, Ltd.

3.
Plant Signal Behav ; 10(8): e1052924, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186626

RESUMO

Sensory integration is vital for motile organisms constantly exposed to changing surroundings. Chlamydomonas reinhardtii is a single-celled green alga found swimming in freshwater. In this type of alga, sensory input is first detected by membrane receptors located in the cell body, and then transduced to the beating cilia by membrane depolarization. Many components of the machinery associated with sensory integration in C. reinhardtii, such as chemoreceptors and repolarization-associated channels, are yet uncharacterized. TRP channels are known mediators for cellular sensing in animal cells and it has been suggested that the C. reinhardtii genome encodes for a set of TRP proteins. Here, by combining behavioral studies with electrophysiological experiments conducted on both population and single alga, we test whether TRP channel blockers affect algal swimming behavior. Our results suggest that a TRP conductance is associated to the repolarization that follows a depolarizing receptor potential, highlighting a primitive function of TRP proteins.


Assuntos
Chlamydomonas reinhardtii/fisiologia , Cílios/fisiologia , Potenciais da Membrana , Canais de Potencial de Receptor Transitório/metabolismo , Fenômenos Biológicos , Chlamydomonas reinhardtii/genética , Genoma , Dados de Sequência Molecular , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA