Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(3): e14106, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38282556

RESUMO

AIM: The voltage-gated Kv7.1 channel, in association with the regulatory subunit KCNE1, contributes to the IKs current in the heart. However, both proteins travel to the plasma membrane using different routes. While KCNE1 follows a classical Golgi-mediated anterograde pathway, Kv7.1 is located in endoplasmic reticulum-plasma membrane junctions (ER-PMjs), where it associates with KCNE1 before being delivered to the plasma membrane. METHODS: To characterize the channel routing to these spots we used a wide repertoire of methodologies, such as protein expression analysis (i.e. protein association and biotin labeling), confocal (i.e. immunocytochemistry, FRET, and FRAP), and dSTORM microscopy, transmission electron microscopy, proteomics, and electrophysiology. RESULTS: We demonstrated that Kv7.1 targeted ER-PMjs regardless of the origin or architecture of these structures. Kv2.1, a neuronal channel that also contributes to a cardiac action potential, and JPHs, involved in cardiac dyads, increased the number of ER-PMjs in nonexcitable cells, driving and increasing the level of Kv7.1 at the cell surface. Both ER-PMj inducers influenced channel function and dynamics, suggesting that different protein structures are formed. Although exhibiting no physical interaction, Kv7.1 resided in more condensed clusters (ring-shaped) with Kv2.1 than with JPH4. Moreover, we found that VAMPs and AMIGO, which are Kv2.1 ancillary proteins also associated with Kv7.1. Specially, VAP B, showed higher interaction with the channel when ER-PMjs were stimulated by Kv2.1. CONCLUSION: Our results indicated that Kv7.1 may bind to different structures of ER-PMjs that are induced by different mechanisms. This variable architecture can differentially affect the fate of cardiac Kv7.1 channels.


Assuntos
Retículo Endoplasmático , Coração , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo
2.
ACS Chem Neurosci ; 14(5): 909-916, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799505

RESUMO

Visualizing neuronal anatomy often requires labor-intensive immunohistochemistry on fixed and dissected brains. To facilitate rapid anatomical staining in live brains, we used genetically targeted membrane tethers that covalently link fluorescent dyes for in vivo neuronal labeling. We generated a series of extracellularly trafficked small-molecule tethering proteins, HaloTag-CD4 (Kirk et al. Front. Neurosci. 2021, 15, 754027) and SNAPf-CD4, which directly label transgene-expressing cells with commercially available ligand-substituted fluorescent dyes. We created stable transgenic Drosophila reporter lines, which express extracellular HaloTag-CD4 and SNAPf-CD4 with LexA and Gal4 drivers. Expressing these enzymes in live Drosophila brains, we labeled the expression patterns of various Gal4 driver lines recapitulating histological staining in live-brain tissues. Pan-neural expression of SNAPf-CD4 enabled the registration of live brains to an existing template for anatomical comparisons. We predict that these extracellular platforms will not only become a valuable complement to existing anatomical methods but will also prove useful for future genetic targeting of other small-molecule probes, drugs, and actuators.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Neuroanatomia , Corantes Fluorescentes/química , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
3.
Mol Oncol ; 13(10): 2107-2120, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31338922

RESUMO

Antibody-based therapy in acute myeloid leukemia (AML) has been marred by significant hematologic toxicity due to targeting of both hematopoietic stem and progenitor cells (HSPCs). Achieving greater success with therapeutic antibodies requires careful characterization of the potential target molecules on AML. One potential target is CD300f, which is an immunoregulatory molecule expressed predominantly on myeloid lineage cells. To confirm the value of CD300f as a leukemic target, we showed that CD300f antibodies bind to AML from 85% of patient samples. While one CD300f monoclonal antibody (mAb) reportedly did not bind healthy hematopoietic stem cells, transcriptomic analysis found that CD300f transcripts are expressed by healthy HSPC. Several CD300f protein isoforms exist as a result of alternative splicing. Importantly for antibody targeting, the extracellular region of CD300f can be present with or without the exon 4-encoded sequence. This results in CD300f isoforms that are differentially bound by CD300f-specific antibodies. Furthermore, binding of one mAb, DCR-2, to CD300f exposes a structural epitope recognized by a second CD300f mAb, UP-D2. Detailed analysis of publicly available transcriptomic data indicated that CD34+ HSPC expressed fewer CD300f transcripts that lacked exon 4 compared to AML with monocytic differentiation. Analysis of a small cohort of AML cells revealed that the UP-D2 conformational binding site could be induced in cells from AML patients with monocytic differentiation but not those from other AML or HSPC. This provides the opportunity to develop an antibody-based strategy to target AMLs with monocytic differentiation but not healthy CD34+ HSPCs. This would be a major step forward in developing effective anti-AML therapeutic antibodies with reduced hematologic toxicity.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Epitopos/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Imunológicos/imunologia , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/imunologia , Terapia de Alvo Molecular , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Receptores Imunológicos/antagonistas & inibidores
4.
Methods Mol Biol ; 1982: 173-190, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172473

RESUMO

Biosynthesis of active human dual oxidases (DUOX1 and DUOX2) requires maturation factors, a.k.a. DUOX activator proteins (DUOXA1 and DUOXA2), that form covalent complexes with DUOX; both chains together represent the mature catalytic unit that functions as a dedicated hydrogen peroxide-generating enzyme. Genetic defects in DUOX2 or DUOXA2 can result in congenital hypothyroidism, whereas partial defects in DUOX2 activity also have been associated with very early-onset inflammatory bowel disease. Our understanding of the links between DUOX dysfunction and these diseases remains incomplete. An important challenge in developing a better understanding of the pathogenic roles of DUOX defects requires robust and reliable DUOX reconstitution cell models to examine the functional consequences of candidate DUOX missense mutations and polymorphisms. Here, we describe methods for efficient heterologous DUOX/DUOXA co-expression and functional characterization, including detailed assessments of posttranslational processing and subcellular translocation of DUOX that accompanies the maturation of these enzymes into catalytically active NADPH oxidases.


Assuntos
Oxidases Duais/metabolismo , Oxidases Duais/química , Oxidases Duais/genética , Ativação Enzimática , Citometria de Fluxo , Imunofluorescência , Expressão Gênica , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Multimerização Proteica , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA