Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38256903

RESUMO

Therapeutically targeting senescent cells seems to be an interesting perspective in treating chronic lung diseases, which are often associated with human aging. The combination of the drug dasatinib and the polyphenol quercetin is used in clinical trials as a senolytic, and the first results point to the relief of physical dysfunction in patients with idiopathic pulmonary fibrosis. In this work, we tested new combinations of drugs and polyphenols, looking for senolytic activity using human lung fibroblasts (MRC-5 cell line) with induced senescence. We researched drugs, such as azithromycin, rapamycin, metformin, FK-506, aspirin, and dasatinib combined with nine natural polyphenols, namely caffeic acid, chlorogenic acid, ellagic acid, ferulic acid, gallic acid, epicatechin, hesperidin, quercetin, and resveratrol. We found new effective senolytic combinations with dasatinib and ellagic acid and dasatinib and resveratrol. Both drug combinations increased apoptosis, reduced BCL-2 expression, and increased caspase activity in senescent MRC-5 cells. Ellagic acid senolytic activity was more potent than quercetin, and resveratrol counteracted inflammatory cytokine release during senolysis in vitro. In conclusion, dasatinib and ellagic acid and dasatinib and resveratrol present in vitro senolytic potential like that observed for the combination in clinical trials of dasatinib and quercetin, and maybe they could be future alternatives in the senotherapeutic field.

2.
Immun Ageing ; 20(1): 25, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291596

RESUMO

Aging is a gradual, continuous series of natural changes in biological, physiological, immunological, environmental, psychological, behavioral, and social processes. Aging entails changes in the immune system characterized by a decrease in thymic output of naïve lymphocytes, an accumulated chronic antigenic stress notably caused by chronic infections such as cytomegalovirus (CMV), and immune cell senescence with acquisition of an inflammatory senescence-associated secretory phenotype (SASP). For this reason, and due to the SASP originating from other tissues, aging is commonly accompanied by low-grade chronic inflammation, termed "inflammaging". After decades of accumulating evidence regarding age-related processes and chronic inflammation, the domain now appears mature enough to allow an integrative reinterpretation of old data. Here, we provide an overview of the topics discussed in a recent workshop "Aging and Chronic Inflammation" to which many of the major players in the field contributed. We highlight advances in systematic measurement and interpretation of biological markers of aging, as well as their implications for human health and longevity and the interventions that can be envisaged to maintain or improve immune function in older people.

3.
Vaccines (Basel) ; 11(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112752

RESUMO

BACKGROUND: Herein, we aimed to follow up on the cellular and humoral immune responses of a group of individuals who initially received the CoronaVac vaccine, followed by a booster with the Pfizer vaccine. METHODS: Blood samples were collected: before and 30 days after the first CoronaVac dose; 30, 90, and 180 days after the second CoronaVac dose, and also 20 days after the booster with the Pfizer vaccine. RESULTS: Whilst the positivity to gamma interferon-type cellular response increased after the first CoronaVac dose, neutralizing and IgG antibody levels only raised 30 days after the second dose, followed by a drop in these responses after 90 and 180 days. The booster with the Pfizer vaccine elicited a robust cellular and humoral response. A higher number of double-negative and senescent T cells, as well as increased pro-inflammatory cytokines levels were found in the participants with lower humoral immune responses. CONCLUSION: CoronaVac elicited an early cellular response, followed by a humoral response, which dropped 90 days after the second dose. The booster with the Pfizer vaccine significantly enhanced these responses. Furthermore, a pro-inflammatory systemic status was found in volunteers who presented senescent T cells, which could putatively impair the immune response to vaccination.

4.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982291

RESUMO

Adipose tissue inflammation in obesity has a deleterious impact on organs such as the liver, ultimately leading to their dysfunction. We have previously shown that activation of the calcium-sensing receptor (CaSR) in pre-adipocytes induces TNF-α and IL-1ß expression and secretion; however, it is unknown whether these factors promote hepatocyte alterations, particularly promoting cell senescence and/or mitochondrial dysfunction. We generated conditioned medium (CM) from the pre-adipocyte cell line SW872 treated with either vehicle (CMveh) or the CaSR activator cinacalcet 2 µM (CMcin), in the absence or presence of the CaSR inhibitor calhex 231 10 µM (CMcin+cal). HepG2 cells were cultured with these CM for 120 h and then assessed for cell senescence and mitochondrial dysfunction. CMcin-treated cells showed increased SA-ß-GAL staining, which was absent in TNF-α- and IL-1ß-depleted CM. Compared to CMveh, CMcin arrested cell cycle, increased IL-1ß and CCL2 mRNA, and induced p16 and p53 senescence markers, which was prevented by CMcin+cal. Crucial proteins for mitochondrial function, PGC-1α and OPA1, were decreased with CMcin treatment, concomitant with fragmentation of the mitochondrial network and decreased mitochondrial transmembrane potential. We conclude that pro-inflammatory cytokines TNF-α and IL-1ß secreted by SW872 cells after CaSR activation promote cell senescence and mitochondrial dysfunction, which is mediated by mitochondrial fragmentation in HepG2 cells and whose effects were reversed with Mdivi-1. This investigation provides new evidence about the deleterious CaSR-induced communication between pre-adipocytes and liver cells, incorporating the mechanisms involved in cellular senescence.


Assuntos
Receptores de Detecção de Cálcio , Fator de Necrose Tumoral alfa , Humanos , Receptores de Detecção de Cálcio/metabolismo , Células Hep G2 , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/metabolismo , Senescência Celular
5.
medRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945413

RESUMO

Background: Leishmania infantum is an opportunistic parasitic infection. An immunocompromised state increases the risk of converting asymptomatic infection to symptomatic visceral leishmaniasis (VL), which has a ~5% fatality rate even with treatment. HIV coinfection increases the risk of death from VL. Methods: A cross-sectional study was performed between 2014 and 2016 to determine the prevalence of L. infantum infection in HIV positive subjects residing in the state of Rio Grande do Norte, Brazil (n=1,372) and of these a subgroup of subjects were followed longitudinally. Subsequent incident cases of VL were ascertained from a public health database through 2018. A subgroup (n=69) of the cross-sectional study subjects was chosen to assess immune status (T cell activation, senescence, exhaustion) and outcome. The data were compared between asymptomatic HIV+/L. infantum+ (HIV/Leish), symptomatic visceral leishmaniasis (VL), recovered VL, DTH+ (Delayed-Type Hypersensitivity response - Leishmanin skin test), AIDS/VL, HIV+ only (HIV+), and Non-HIV/Non L. infantum infection (control subjects). Results: The cross-sectional study showed 24.2% of HIV+ subjects had positive anti-IgG Leishmania antibodies. After 3 years, 2.4% (8 of 333) of these HIV/Leish coinfected subjects developed AIDS/VL, whereas 1.05% (11 of 1,039) of HIV subjects with negative leishmania serology developed AIDS/VL. Poor adherence to antiretroviral therapy (p=0.0008) or prior opportunistic infections (p=0.0007) was associated with development of AIDS/VL. CD4+ (p=0.29) and CD8+ (p=0.38) T cells counts or viral load (p=0.34) were similar between asymptomatic HIV/Leish and HIV subjects. However, activated CD8+CD38+HLA-DR+ T cells were higher in asymptomatic HIV/Leish than HIV group. Likewise, senescent (CD57+) or exhausted (PD1+) CD8+ T cells were higher in asymptomatic HIV/Leish than in AIDS/VL or HIV groups. Conclusion: Although asymptomatic HIV/Leish subjects had normal and similar CD4+ and CD8+ T cells counts, their CD8+T cells had increased activation, senescence, and exhaustion, which could contribute to risk of developing VL.

6.
J Chem Neuroanat ; 128: 102210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496000

RESUMO

Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.


Assuntos
Estresse Oxidativo , Qualidade de Vida , Encéfalo/metabolismo , Antioxidantes/metabolismo
7.
Geroscience ; 44(3): 1747-1759, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460445

RESUMO

Senescent cells are in a cell cycle arrest state and accumulate with aging and obesity, contributing to a chronic inflammatory state. Treatment with senolytic drugs dasatinib and quercetin (D + Q) can reduce senescent cell burden in several tissues, increasing lifespan. Despite this, there are few reports about senescent cells accumulating in female reproductive tissues. Therefore, the aim of the study was to characterize the ovarian reserve and its relationship with cellular senescence in genetically obese mice (ob/ob). In experiment 1, ob/ob (n = 5) and wild-type (WT) mice (n = 5) at 12 months of age were evaluated. In experiment 2, 2-month-old female ob/ob mice were treated with senolytics (D + Q, n = 6) or placebo (n = 6) during the 4 months. Obese mice had more senescent cells in ovaries, indicated by increased p21 and p16 and lipofuscin staining and macrophage infiltration. Treatment with D + Q significantly reduced senescent cell burden in ovaries of obese mice. Neither obesity nor treatment with D + Q affected the number of ovarian follicles. In conclusion, our data indicate that obesity due to leptin deficiency increases the load of senescent cells in the ovary, which is reduced by treatment by senolytics. However, neither obesity nor D + Q treatment affected the ovarian reserve.


Assuntos
Ovário , Senoterapia , Animais , Senescência Celular , Dasatinibe/farmacologia , Feminino , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Quercetina/farmacologia
8.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269683

RESUMO

Senescent cells express a senescence-associated secretory phenotype (SASP) with a pro-inflammatory bias, which contributes to the chronicity of inflammation. During chronic inflammatory diseases, infiltrating CD4+ T lymphocytes can undergo cellular senescence and arrest the surface expression of CD28, have a response biased towards T-helper type-17 (Th17) of immunity, and show a remarkable ability to induce osteoclastogenesis. As a cellular counterpart, T regulatory lymphocytes (Tregs) can also undergo cellular senescence, and CD28- Tregs are able to express an SASP secretome, thus severely altering their immunosuppressive capacities. During periodontitis, the persistent microbial challenge and chronic inflammation favor the induction of cellular senescence. Therefore, senescence of Th17 and Treg lymphocytes could contribute to Th17/Treg imbalance and favor the tooth-supporting alveolar bone loss characteristic of the disease. In the present review, we describe the concept of cellular senescence; particularly, the one produced during chronic inflammation and persistent microbial antigen challenge. In addition, we detail the different markers used to identify senescent cells, proposing those specific to senescent T lymphocytes that can be used for periodontal research purposes. Finally, we discuss the existing literature that allows us to suggest the potential pathogenic role of senescent CD4+CD28- T lymphocytes in periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Antígenos CD28 , Humanos , Inflamação , Linfócitos T Reguladores , Células Th17
9.
Clin Transl Oncol ; 23(6): 1253-1261, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33389662

RESUMO

PURPOSE: An in-depth understanding of the mechanism of thyroid cancer progression will help identify patients with thyroid cancer with a high risk of recurrence and metastasis. Although studies have pointed out that the senescence of thyroid tumor cells may stimulate TAMs and cause a series of changes. However, the role of TAMs in aging thyroid cancer cells is still unknown. The aim of this study was to investigate the function of TAMs in aging thyroid cancer cells. METHODS: We conducted in vitro model studies based on the K1 cell line to induce tumor cell senescence and study its effect on the differentiation of macrophages, flow cytometry was used to confirm polarization of macrophages, transwell assay was used to confirm changes of invasion and migration of tumor cells. RESULT: Our data indicate that aging thyroid tumor cell lines trigger the polarization of M2-like macrophages, accompanied by increased expression of CCL17, CCL18, IL-18, and TGFß1. This event is caused by the activation of the NFκB pathway upregulation of CXCL2 and CXCL3 is related. Further studies have shown that differentiated M2-like macrophages promote tumor cell migration (but have no effect on cell proliferation). CONCLUSION: Our study indicating that the interaction between tumor and TAMs also occurs in the advanced stages of thyroid tumors and will lead to faster tumors progress.


Assuntos
Diferenciação Celular , Movimento Celular , Senescência Celular , Neoplasias da Glândula Tireoide/patologia , Macrófagos Associados a Tumor/fisiologia , Linhagem Celular Tumoral , Humanos
10.
Neural Regen Res ; 16(1): 58-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32788448

RESUMO

Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual's vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer's disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.

11.
Mech Ageing Dev ; 192: 111360, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32976914

RESUMO

Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.


Assuntos
Retardo do Crescimento Fetal , Fibroblastos , Progéria , RNA Polimerase III , Proteína Supressora de Tumor p53/metabolismo , Nucléolo Celular/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Dano ao DNA , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Expressão Gênica , Humanos , Mutação , Progéria/genética , Progéria/patologia , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA Ribossômico 5S/metabolismo
12.
Semin Immunopathol ; 42(5): 545-557, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747977

RESUMO

The aging immune system (immunosenescence) has been implicated with increased morbidity and mortality in the elderly. Of note, T cell aging and low-grade inflammation (inflammaging) are implicated with several age-related conditions. The expansion of late-differentiated T cells (CD28-), regulatory T cells, increased serum levels of autoantibodies, and pro-inflammatory cytokines were implicated with morbidities during aging. Features of accelerated immunosenescence can be identified in adults with chronic inflammatory conditions, such as rheumatoid arthritis, and are predictive of poor clinical outcomes. Therefore, there is an interplay between immunosenescence and age-related diseases. In this review, we discuss how the aging immune system may contribute to the development and clinical course of age-related diseases such as neurodegenerative diseases, rheumatoid arthritis, cancer, cardiovascular, and metabolic diseases.


Assuntos
Imunossenescência , Idoso , Envelhecimento , Senescência Celular , Citocinas , Humanos , Inflamação
13.
Aging (Albany NY) ; 12(11): 10035-10040, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32534451

RESUMO

Cell senescence is a process that causes growth arrest and the release of a senescence associated secretory phenotype (SASP), characterized by secretion of chemokines, cytokines, cell growth factors and metalloproteases, leading to a tissue condition that may precipitate cancers and neurodegenerative processes. With the recent pandemic of coronavirus, senolytic drugs are being considered as possible therapeutic tools to reduce the virulence of SARS-CoV-2. In the last few years, our research group showed that lithium carbonate at microdose levels was able to stabilize memory and change neuropathological characteristics of Alzheimer's disease (AD). In the present work, we present evidence that low-dose lithium can reduce the SASP of human iPSCs-derived astrocytes following acute treatment, suggesting that microdose lithium could protect cells from senescence and development of aging-related conditions. With the present findings, a perspective of the potential use of low-dose lithium in old patients from the "high risk group" for COVID-19 (with hypertension, diabetes and chronic obstructive pulmonary disease) is presented.


Assuntos
Astrócitos/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Compostos de Lítio/uso terapêutico , Pneumonia Viral/tratamento farmacológico , COVID-19 , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Pandemias
14.
Molecules ; 25(8)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295227

RESUMO

Parthenium argentatum (Gray), commonly known as guayule, has been used to obtain natural rubber since the beginning of the 20th century. Additionally, the so called "resin" is a waste product derived from the industrial process. The cycloartane-type triterpene Argentatin A (AA) is one of the main constituents of the industrial waste resin. In this study we evaluated the AA anticancer activity both in vitro and in vivo in the HCT116 colon cancer cells. The apoptosis promotion of AA was assessed by the annexin V/propidium iodide (PI) assay. The senescence was evaluated for SA-ß-galactosidase, and PCNA was used as a marker of proliferation. Its antitumor activity was evaluated using a xenograft mouse model. The results indicated that AA-induced apoptosis in HCT-116 cells and was positively stained for SA-ß-galactosidase. In the xenografted mice test, the administration of AA at the dose of 250 mg/kg three times a week for 21 days reduced tumor growth by 78.1%. A comparable tumor reduction was achieved with cisplatin at the dose of 2 mg/kg administered three times a week for 21 days. However, nude mice treated with AA did not lose weight, as they did remarkably when treated with cisplatin. Furthermore, the animals treated with AA showed similar blood profiles as the healthy control group. These data indicate the low toxicity of AA compared to that shown by cisplatin.


Assuntos
Antineoplásicos/administração & dosagem , Triterpenos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Imuno-Histoquímica , Camundongos , Estrutura Molecular , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Galactosidase/metabolismo
15.
Biochem J ; 476(17): 2463-2486, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31431479

RESUMO

Cellular senescence is an endpoint of chemotherapy, and targeted therapies in melanoma and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and an enhanced mitochondrial energy metabolism supports resistance to therapy in melanoma cells. Herein, we assessed the mitochondrial function of therapy-induced senescent melanoma cells obtained after exposing the cells to temozolomide (TMZ), a methylating chemotherapeutic agent. Senescence induction in melanoma was accompanied by a substantial increase in mitochondrial basal, ATP-linked, and maximum respiration rates and in coupling efficiency, spare respiratory capacity, and respiratory control ratio. Further examinations revealed an increase in mitochondrial mass and length. Alterations in mitochondrial function and morphology were confirmed in isolated senescent cells, obtained by cell-size sorting. An increase in mitofusin 1 and 2 (MFN1 and 2) expression and levels was observed in senescent cells, pointing to alterations in mitochondrial fusion. Silencing mitofusin expression with short hairpin RNA (shRNA) prevented the increase in mitochondrial length, oxygen consumption rate and secretion of interleukin 6 (IL-6), a component of the SASP, in melanoma senescent cells. Our results represent the first in-depth study of mitochondrial function in therapy-induced senescence in melanoma. They indicate that senescence increases mitochondrial mass, length and energy metabolism; and highlight mitochondria as potential pharmacological targets to modulate senescence and the SASP.


Assuntos
Senescência Celular , Metabolismo Energético , GTP Fosfo-Hidrolases/metabolismo , Melanoma Experimental/metabolismo , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , GTP Fosfo-Hidrolases/genética , Inativação Gênica , Interleucina-6/genética , Interleucina-6/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas de Neoplasias/genética , Temozolomida/farmacologia
16.
Mol Neurobiol ; 55(5): 4185-4194, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28612256

RESUMO

Glioblastoma (GBM) is an aggressive brain tumor with temozolomide (TMZ)-based chemotherapy as the main therapeutic strategy. Doxorubicin (DOX) is not used in gliomas due to its low bioavailability in the brain; however, new delivery strategies and low doses may be effective in the long term, especially as part of a drug cocktail. Our aim was to evaluate the chronic effects of low doses of DOX and TMZ in GBM. Human U87-ATCC cells and a primary GBM culture were chronically treated with TMZ (5 µM) and DOX (1 and 10 nM) alone or combined. DOX resulted in a reduction in the number of cells over a period of 35 days and delayed the cell regrowth. In addition, DOX induced cell senescence and reduced tumor sphere formation and the proportion of NANOG- and OCT4-positive cells after 7 days. Low doses of TMZ potentiated the effects of DOX on senescence and sphere formation. This combined response using low doses of DOX may pave the way for its use in glioma therapy, with new technologies to overcome its low blood-brain barrier permeability.


Assuntos
Neoplasias Encefálicas/patologia , Doxorrubicina/farmacologia , Glioblastoma/patologia , Temozolomida/farmacologia , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
17.
Mol Neurobiol ; 54(2): 888-894, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26780458

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, characterized by excessive cell proliferation, resistance to apoptosis, and invasiveness. Due to resistance to currently available treatment options, the prognosis for patients with GBM is very dismal. The activation of gastrin-releasing peptide receptors (GRPR) stimulates GBM cell proliferation, whereas GRPR antagonists induce antiproliferative effects in in vitro and in vivo experimental models of GBM. However, the role of GRPR in regulating other aspects of GBM cell function related to tumor progression remains poorly understood, and previous studies have not used RNA interference techniques as tools to examine GRPR function in GBM. Here, we found that stable GRPR knockdown by a lentiviral vector using a short hairpin interfering RNA sequence in human A172 GBM cells resulted in increased cell size and altered cell cycle dynamics consistent with cell senescence. These changes were accompanied by increases in the content of p53, p21, and p16, activation of epidermal growth factor receptors (EGFR), and a reduction in p38 content. These results increase our understanding of GRPR regulation of GBM cells and further support that GRPR may be a relevant therapeutic target in GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Senescência Celular/fisiologia , Glioblastoma/metabolismo , Receptores da Bombesina/deficiência , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Receptores da Bombesina/genética
18.
Molecules ; 20(12): 21125-37, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26633316

RESUMO

Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-ß-galactosidase. Senescence-related proteins (PCNA, p21, and p27) were analyzed by Western blotting. Potential toxicity of argentatin B was evaluated in CD-1 mice. Its effect on tumor growth was tested in a HCT-15 and PC-3 xenograft model. Argentatin B induced an increment of cells in sub G1, but did not produce apoptosis. Proliferation of both cell lines was inhibited by argentatin B. Forty-three percent HCT-15, and 66% PC-3 cells showed positive SA-ß-galactosidase staining. The expression of PCNA was decreased, p21 expression was increased in both cell lines, but p27 expression increased only in PC-3 cells after treatment. Administration of argentatin B to healthy mice did not produce treatment-associated pathologies. However, it restricted the growth of HCT-15 and PC-3 tumors. These results indicate that treatment with argentatin B induces cell senescence.


Assuntos
Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Neoplasias da Próstata/patologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA