Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. J. Pharm. Sci. (Online) ; 59: e23017, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505848

RESUMO

Abstract Infusion solutions must be stable from the production stage until the infusion stage. Some infusion fluids contain degradation products, known as advanced glycation end products (AGEs); however, it is unknown whether AGEs exist in parenteral nutrition solutions. We aimed to investigate this question and test the effect of infusion conditions on AGE formation in parenteral nutrition solution. Nine parenteral nutrition solutions were supplied by the pharmacy with which we collaborated. To simulate the infusion conditions, the solutions were held in a patient room with standard lighting and temperature for 24 hours. Samples were taken at the beginning (group A) and the end (24th hour, group B) of the infusion period. The degradation products were 3-deoxyglucosone, pentosidine, N-carboxymethyl lysine, and 4-hydroxynonenal, which we investigated by high-performance liquid chromatography-mass spectrometry (LC-MS) and Q-TOF LC/MS methods. Two of four degradation products, 4-hydroxynonenal and N-carboxymethyl lysine, were detected in all samples, and Group B had higher levels of both compounds compared to Group A, who showed that the quantities of these compounds increased in room conditions over time. The increase was significant for 4-hydroxynonenal (p=0.03), but not for N-carboxymethyl lysine (p=0.23). Moreover, we detected in the parenteral nutrition solutions a compound that could have been 4-hydroxy-2-butynal or furanone


Assuntos
Nutrição Parenteral/efeitos adversos , Produtos Finais de Glicação Avançada/análise , Soluções de Nutrição Parenteral/administração & dosagem , Farmácia/classificação , Espectrometria de Massas/métodos , Quartos de Pacientes/classificação , Iluminação/classificação , Cromatografia Líquida de Alta Pressão/métodos
2.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889349

RESUMO

Endophytes, microorganisms that live in the internal tissues and organs of the plants, are known to produce numerous bioactive compounds, including, at times, some phytochemicals of their host plant. For such reason, endophytes have been quoted as a potential source for discovering bioactive compounds, particularly, of medical interest. Currently, many non-communicable diseases are threatening global human health, noticeably: diabetes, neurodegenerative diseases, cancer, and other ailment related to chronic inflammation and ageing. Intriguingly, the pathogenesis and development of these diseases have been linked to an excessive formation and accumulation of advanced glycation end products (AGEs). AGEs are a heterogeneous group of compounds that can alter the conformation, function, and lifetime of proteins. Therefore, compounds that prevent the formation and consequent accumulation of AGEs (AntiAGEs compounds) could be useful to delay the progress of some chronic diseases, and/or harmful effects of undue AGEs accumulation. Despite the remarkable ability of endophytes to produce bioactive compounds, most of the natural antiAGEs compounds reported in the literature are derived from plants. Accordingly, this work covers 26 plant antiAGEs compounds and some derivatives that have been reported as endophytic metabolites, and discusses the importance, possible advantages, and challenges of using endophytes as a potential source of antiAGEs compounds.


Assuntos
Endófitos , Produtos Finais de Glicação Avançada , Endófitos/química , Fungos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Compostos Fitoquímicos/metabolismo , Plantas/química
3.
Curr Diab Rep ; 17(8): 63, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28695383

RESUMO

PURPOSE OF REVIEW: This report analyzes emerging evidence about the role of dietary advanced glycation end products (AGEs) as a cardiometabolic risk factor. Two important aspects are discussed: First, the modulation of AGE load by dietary AGEs; second, if the evidence of clinical and observational studies is enough to make dietary recommendations towards lowering AGE intake. RECENT FINDINGS: Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases. The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.


Assuntos
Doenças Cardiovasculares/complicações , Dieta , Produtos Finais de Glicação Avançada/efeitos adversos , Síndrome Metabólica/complicações , Diabetes Mellitus/patologia , Produtos Finais de Glicação Avançada/química , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA