Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000683

RESUMO

Chitosan is a biopolymer with unique properties that have attracted considerable attention in various scientific fields in recent decades. Although chitosan is known for its poor electrical and mechanical properties, there is interest in producing chitosan-based materials reinforced with carbon-based materials to impart exceptional properties such as high electrical conductivity and high Young's modulus. This study describes the synergistic effect of carbon-based materials, such as reduced graphene oxide and carbon nanotubes, in improving the electrical, optical, and mechanical properties of chitosan-based films. Our findings demonstrate that the incorporation of reduced graphene oxide influences the crystallinity of chitosan, which considerably impacts the mechanical properties of the films. However, the incorporation of a reduced graphene oxide-carbon nanotube complex not only significantly improves the mechanical properties but also significantly improves the optical and electrical properties, as was demonstrated from the photoluminescence studies and resistivity measurements employing the four-probe technique. This is a promising prospect for the synthesis of new materials, such as biopolymer films, with potential applications in optical, electrical, and biomedical bioengineering applications.

2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000155

RESUMO

Transition metal oxides are a great alternative to less expensive hydrogen evolution reaction (HER) catalysts. However, the lack of conductivity of these materials requires a conductor material to support them and improve the activity toward HER. On the other hand, carbon paste electrodes result in a versatile and cheap electrode with good activity and conductivity in electrocatalytic hydrogen production, especially when the carbonaceous material is agglomerated with ionic liquids. In the present work, an electrode composed of multi-walled carbon nanotubes (MWCNTs) and cobalt ferrite oxide (CoFe2O4) was prepared. These compounds were included on an electrode agglomerated with the ionic liquid N-octylpyridinium hexafluorophosphate (IL) to obtain the modified CoFe2O4/MWCNTs/IL nanocomposite electrode. To evaluate the behavior of each metal of the bimetallic oxide, this compound was compared to the behavior of MWCNTs/IL where a single monometallic iron or cobalt oxides were included (i.e., α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL). The synthesis of the oxides has been characterized by X-ray diffraction (XRD), RAMAN spectroscopy, and field emission scanning electronic microscopy (FE-SEM), corroborating the nanometric character and the structure of the compounds. The CoFe2O4/MWCNTs/IL nanocomposite system presents excellent electrocatalytic activity toward HER with an onset potential of -270 mV vs. RHE, evidencing an increase in activity compared to monometallic oxides and exhibiting onset potentials of -530 mV and -540 mV for α-Fe2O3/MWCNTs/IL and Co3O4/MWCNTs/IL, respectively. Finally, the system studied presents excellent stability during the 5 h of electrolysis, producing 132 µmol cm-2 h-1 of hydrogen gas.


Assuntos
Cobalto , Compostos Férricos , Hidrogênio , Líquidos Iônicos , Nanocompostos , Nanotubos de Carbono , Óxidos , Cobalto/química , Nanotubos de Carbono/química , Líquidos Iônicos/química , Nanocompostos/química , Catálise , Hidrogênio/química , Compostos Férricos/química , Óxidos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Difração de Raios X , Análise Espectral Raman
3.
Sci Rep ; 14(1): 16582, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019944

RESUMO

The indiscriminate use of pesticides makes us susceptible to the toxicity of these chemical compounds, which may be present in high quantities in our food. It is crucial to develop inexpensive and rapid methods for determining these pesticides for government control or even for the general population. In this study, we investigated the fabrication of self-assembled LbL films using multi-walled carbon nanotubes (MWCNT) and nickel tetrasulphonated phthalocyanine (NiTsPc) as an electrochemical sensor for the herbicide Diquat (DQ). The Layer-by-Layer (LbL) assembly of the (MWCNT/NiTsPc) film was examined, along with its structural and morphological characteristics. The effect of the number of layers in DQ detection was evaluated by cyclic voltammetry, followed by the detection through differential pulse voltammetry. The achieved limit of detection was 9.62 × 10-7 mol L-1. A ~ 30% decrease in sensitivity was observed in the presence of Paraquat, a banned herbicide and electrochemical interferent due to the structural similarities, which is regularly neglected in the most published studies. The sensor was tested in real samples, demonstrating a recovery of 98.5% in organic apples.

4.
Chemosphere ; 361: 142481, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823428

RESUMO

The study presents the successful development of a new electrochemical sensor with low cost and disposability for application in nitrofurazone detection in environmental and pharmaceutical samples. The sensors were fabricated using materials obtained from local storage and conductive carbon ink. The modification of the screen-printed electrodes with the hybrid nanomaterial based on silver nanoparticles, carbon quantum dots, and carbon nanotubes showed synergistic contributions in the nitrofurazone electrooxidation, as observed in the wide linear range (0.008 at 15.051 µM), with a sensitivity of 0.650 µA/µM. The limit of detection obtained was 4.6 nM. Differential pulse voltammetry, cyclic voltammetry, X-ray photoelectron spectroscopy, X-ray diffraction analysis, and high-resolution transmission electron microscopy were used to evaluate the electrochemical and structural characteristics. Studies of possible interferences were considered with nitrofurazone in the presence of the ions and organic molecules. The results were satisfactory, with a variation of 93.3% ± 4.39% at 100% ± 2.40%. The low volume used in the analyses (50 µL), disposability, high sensibility, selectivity, and low limit of detection are advantages that make the proposed sensor an electrochemical tool of high viability for the NFZ detection in environmental matrices and pharmaceutical formulations.


Assuntos
Antibacterianos , Técnicas Eletroquímicas , Nanopartículas Metálicas , Nanotubos de Carbono , Nitrofurazona , Nitrofurazona/análise , Nitrofurazona/química , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Nanopartículas Metálicas/química , Antibacterianos/análise , Limite de Detecção , Prata/química , Eletrodos , Pontos Quânticos/química
5.
Nanomaterials (Basel) ; 14(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38869524

RESUMO

The chemical stability of azithromycin (AZM) may be compromised depending on the imposed thermo-oxidative conditions. This report addresses evidence of this process under varying conditions of temperature (20-80 °C), exposure time to UV radiation (1-3 h irradiation at 257 nm), and air saturation (1-3 h saturation with atmospheric air at 1.2 L min-1 and 15 kPa) through electrochemical measurements performed with a thermoactivated cerium molybdate (Ce2(MoO4)3)/multi-walled carbon nanotubes (MWCNT)-based composite electrode. Thermal treatment at 120 °C led to coordinated water elimination in Ce2(MoO4)3, improving its electrocatalytic effect on antibiotic oxidation, while MWCNT were essential to reduce the charge-transfer resistance and promote signal amplification. Theoretical-experimental data revealed remarkable reactivity for the irreversible oxidation of AZM on the working sensor using phosphate buffer (pH = 8) prepared in CH3OH/H2O (10:90%, v/v). Highly sensitive (230 nM detection limit) and precise (RSD < 4.0%) measurements were recorded under these conditions. The results also showed that AZM reduces its half-life as the temperature, exposure time to UV radiation, and air saturation increase. This fact reinforces the need for continuous quality control of AZM-based pharmaceuticals, using conditions closer to those observed during their transport and storage, reducing impacts on consumers' health.

6.
Nanomaterials (Basel) ; 14(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38869583

RESUMO

This paper presents an application for a molybdenum disulfide nanomaterial with multiwalled carbon nanotubes (MoS2@MWCNT/E) in a modified electrode substrate for the detection of uric acid (UA). The modified electrode generates a substantial three-fold increase in the anodic peak current for UA compared to the unmodified MWCNT electrode (MWCNT/E). The MoS2@MWCNT/E surface was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS). The achieved detection limit stood at 0.04 µmol/L, with a relative standard deviation (RSD) of 2.0% (n = 10). The method's accuracy, assessed through relative error and percent recovery, was validated using a urine standard solution spiked with known quantities of UA.

7.
Int J Biol Macromol ; 269(Pt 1): 131962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692550

RESUMO

Carbon nanotubes are promising materials for biomedical applications like delivery systems and tissue scaffolds. In this paper, magnetic carbon nanotubes (M-CNTs) covered with bovine serum albumin (M-CNTs-BSA) or functionalized with hydrophilic monomers (M-CNTs-HL) were synthesized, characterized, and evaluated concerning their interaction with Caco-2 cells. There is no comparison between these two types of functionalization, and this study aimed to verify their influence on the material's interaction with the cells. Different concentrations of the nanotubes were applied to investigate cytotoxicity, cell metabolism, oxidative stress, apoptosis, and capability to cross biomimetic barriers. The materials showed cytocompatibility up to 100 µg mL-1 and a hemolysis rate below 2 %. Nanotubes' suspensions were allowed to permeate Caco-2 monolayers for up to 8 h under the effect of the magnetic field. Magnetic nanoparticles associated with the nanotubes allowed estimation of permeation through the monolayers, with values ranging from 0.50 to 7.19 and 0.27 to 9.30 × 10-3 µg (equivalent to 0.43 to 6.22 and 0.23 to 9.54 × 10-2 % of the initially estimated mass of magnetic nanoparticles) for cells exposed and non-exposed to the magnets, respectively. Together, these results support that the developed materials are promising for applications in biomedical and biotechnological fields.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanotubos de Carbono , Soroalbumina Bovina , Nanotubos de Carbono/química , Humanos , Células CACO-2 , Soroalbumina Bovina/química , Permeabilidade , Animais , Hemólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Teste de Materiais , Bovinos
8.
Environ Sci Pollut Res Int ; 31(20): 29957-29970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598152

RESUMO

This study explores the utilization of adsorption and advanced oxidation processes for the degradation of ofloxacin (OFL) and ciprofloxacin (CIP) using a green functionalized carbon nanotube (MWCNT-OH/COOH-E) as adsorbent and catalyst material. The stability and catalytic activity of the solid material were proved by FT-IR and TG/DTG, which also helped to elucidate the reaction mechanisms. In adsorption kinetic studies, both antibiotics showed similar behavior, with an equilibrium at 30 min and 60% removal. The adsorption kinetic data of both antibiotics were well described by the pseudo-first-order (PFO) model. Different advanced oxidation processes (AOPs) were used, and the photolytic degradation was not satisfactory, whereas heterogeneous photocatalysis showed high degradation (⁓ 70%), both processes with 30 min of reaction. Nevertheless, ozonation and catalytic ozonation have resulted in the highest efficiencies, 90%, and 70%, respectively, after 30-min reaction. For AOP data modeling, the first-order model better described CIP and OFL in photocatalytic and ozonation process. Intermediates were detected by MS-MS analysis, such as P313, P330, and P277 for ciprofloxacin and P391 and P332 for ofloxacin. The toxicity test demonstrated that a lower acute toxicity was observed for the photocatalysis method samples, with only 3.1 and 1.5 TU for CIP and OFL, respectively, thus being a promising method for its degradation, due to its lower risk of inducing the proliferation of bacterial resistance in an aquatic environment. Ultimately, the analysis of MWCNT reusability showed good performance for 2 cycles and regeneration of MWCNT with ozone confirmed its effectiveness up to 3 cycles.


Assuntos
Ciprofloxacina , Nanotubos de Carbono , Ofloxacino , Oxirredução , Poluentes Químicos da Água , Ciprofloxacina/química , Ofloxacino/química , Nanotubos de Carbono/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Ozônio/química , Antibacterianos/química , Catálise
9.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667189

RESUMO

L-Lactate is an important bioanalyte in the food industry, biotechnology, and human healthcare. In this work, we report the development of a new L-lactate electrochemical biosensor based on the use of multiwalled carbon nanotubes non-covalently functionalized with avidin (MWCNT-Av) deposited at glassy carbon electrodes (GCEs) as anchoring sites for the bioaffinity-based immobilization of a new recombinant biotinylated lactate oxidase (bLOx) produced in Escherichia coli through in vivo biotinylation. The specific binding of MWCNT-Av to bLOx was characterized by amperometry, surface plasmon resonance (SPR), and electrochemical impedance spectroscopy (EIS). The amperometric detection of L-lactate was performed at -0.100 V, with a linear range between 100 and 700 µM, a detection limit of 33 µM, and a quantification limit of 100 µM. The proposed biosensor (GCE/MWCNT-Av/bLOx) showed a reproducibility of 6.0% and it was successfully used for determining L-lactate in food and enriched serum samples.


Assuntos
Avidina , Técnicas Biossensoriais , Ácido Láctico , Oxigenases de Função Mista , Nanotubos de Carbono , Nanotubos de Carbono/química , Oxigenases de Função Mista/química , Avidina/química , Técnicas Eletroquímicas , Ressonância de Plasmônio de Superfície , Enzimas Imobilizadas/química , Escherichia coli , Biotinilação , Eletrodos , Espectroscopia Dielétrica , Limite de Detecção
10.
Sci Rep ; 14(1): 8405, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600178

RESUMO

Polylactic acid (PLA) is a bioresorbable and biodegradable polymer extensively used in various biomedical and engineering applications. In this study, we investigated the mass loss and thermal properties of PLA-multi-walled carbon nanotube (MWCNT) composites under simulated physiological conditions. The composites were prepared by melting PLA with 0.1, 0.5, 1.0, and 5.0 wt% MWCNTs using an ultrasonic agitator, and FTIR analysis confirmed composite formation. Subsequently, the composites were subjected to hydrolysis under simulated physiological conditions (pH 7.4 and 37 °C) for up to 60 days. The results revealed that the mass loss of the composites decreased with increasing MWCNT content, suggesting that the presence of MWCNTs decelerated the hydrolysis process. On day 58, the mass loss of pure PLA was 12.5%, decreasing to 8.34% with 0.1% MWCNT, 5.94% with 0.5% MWCNT, 4.59% with 1% MWCNT, and 3.54% with 5.0% MWCNT. This study offers valuable insights into the behavior of PLA-MWCNT composites under physiologically simulated conditions, facilitating the development of new polymer composites with enhanced thermal stability and degradation resistance for biomedical applications.

11.
Environ Res ; 251(Pt 2): 118733, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521353

RESUMO

The presence of emerging contaminants in wastewater poses a global environmental challenge, requiring the development of innovative materials or methods for their treatment. This study focused on the production of green functionalized carbon nanotubes (CNTs) and using them in the adsorption of the pharmaceuticals Losartan (LOS) and Diclofenac (DIC). The efficiency of the methodology was verified by characterization techniques. Elemental composition analysis indicated a significant increase in the iron content after the green functionalization, proving the effectiveness of the method. Thermogravimetric analysis showed similar thermal degradation profiles for pristine CNTs and functionalized CNTs, indicating better post-functionalization thermal stability. BET analysis revealed mesoporous characteristics of CNTs, with increased surface area and pore volumes after functionalization. X-Ray diffraction confirmed the preservation of the lattice structure of the CNTs post-functionalization and post-adsorption, with changes in peak broadening suggesting surface modifications. LOS and DIC adsorption were evaluated via kinetic studies at four different concentrations (0.1-0.4 mmol/L) that were best represented by the pseudo-second order model, suggesting chemisorption mechanisms, with faster and higher uptakes for DIC (0.084-0.261 mmol/g; teq = 5 min) when compared to LOS (0.058-0.235 mmol/g; teq = 20 min). The curves were also studied via artificial neural networks (ANN) and revealed that the best ANN architecture for representing the experimental data is a network with [3 5 5 2] neurons trained using the Bayesian-Regularization algorithm and the Log-sigmoid (hidden layers) and Linear (output layer) transfer functions. The desorption study showed that CaCl2 had better performance in CNT regeneration, reaching its removal capacity above 50% up to 3 cycles, for both pharmaceuticals. These findings reveal the potential of the developed material as a promising adsorbent for targeted removal of pollutants, contributing to advances in the remediation of emerging contaminants and the application of artificial intelligence in adsorption research.


Assuntos
Diclofenaco , Ferro , Losartan , Nanotubos de Carbono , Poluentes Químicos da Água , Diclofenaco/química , Nanotubos de Carbono/química , Adsorção , Losartan/química , Cinética , Poluentes Químicos da Água/química , Ferro/química , Química Verde/métodos , Redes Neurais de Computação , Café/química , Biomassa , Nanopartículas Metálicas/química
12.
Polymers (Basel) ; 16(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475354

RESUMO

Bipolar plates (BPs) are one of the most important components of polymer electrolyte membrane fuel cells (PEMFCs) because of their important role in gas and water management, electrical performance, and mechanical stability. Therefore, promising materials for use as BPs should meet several technical targets established by the United States Department of Energy (DOE). Thus far, in the literature, many materials have been reported for possible applications in BPs. Of these, polymer composites reinforced with carbon allotropes are one of the most prominent. Therefore, in this review article, we present the progress and critical analysis on the use of carbon material-reinforced polymer composites as BPs materials in PEMFCs. Based on this review, it is observed that numerous polymer composites reinforced with carbon allotropes have been produced in the literature, and most of the composites synthesized and characterized for their possible application in BPs meet the DOE requirements. However, these composites can still be improved before their use for BPs in PEMFCs.

13.
ACS Appl Bio Mater ; 7(3): 1536-1546, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38346264

RESUMO

Functionally active aligned fibers are a promising approach to enhance neuro adhesion and guide the extension of neurons for peripheral nerve regeneration. Therefore, the present study developed poly(lactic-co-glycolic acid) (PLGA)-aligned electrospun mats and investigated the synergic effect with carbon nanotubes (CNTs) and Choline Bitartrate ionic liquid (Bio-IL) on PLGA fibers. Morphology, thermal, and mechanical performances were determined as well as the hydrolytic degradation and the cytotoxicity. Results revealed that electrospun mats are composed of highly aligned fibers, and CNTs were aligned and homogeneously distributed into the fibers. Bio-IL changed thermal transition behavior, reduced glass transition temperature (Tg), and favored crystal phase formation. The mechanical properties increased in the presence of CNTs and slightly decreased in the presence of the Bio-IL. The results demonstrated a decrease in the degradation rate in the presence of CNTs, whereas the use of Bio-IL led to an increase in the degradation rate. Cytotoxicity results showed that all the electrospun mats display metabolic activity above 70%, which demonstrates that they are biocompatible. Moreover, superior biocompatibility was observed for the electrospun containing Bio-IL combined with higher amounts of CNTs, showing a high potential to be used in nerve tissue engineering.


Assuntos
Líquidos Iônicos , Nanotubos de Carbono , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Líquidos Iônicos/farmacologia , Ácido Poliglicólico/química , Ácido Láctico/farmacologia , Ácido Láctico/química , Glicóis , Alicerces Teciduais
14.
Artigo em Inglês | MEDLINE | ID: mdl-38334123

RESUMO

Incorporating enzymes into nanostructured supercapacitor devices represents a groundbreaking advancement in energy storage. Enzyme catalysis using nanomaterials enhances performance, efficiency, and stability by facilitating precise charge transfer, while the nanostructure provides a high surface area and improved conductivity. This synergy yields eco-friendly, high-performance energy storage solutions crucial for diverse applications, from portable electronics to renewable energy systems. In this study, we harnessed the versatility of Langmuir-Blodgett films to create meticulously organized thin films with specific enzyme properties, coupled with carbon nanotubes, to develop biosupercapacitors. Langmuir monolayers were constructed with stearic acid, carbon nanotubes, and galactose oxidase. Following comprehensive characterization using tensiometric, rheological, morphological, and spectroscopic techniques, the monolayers were transferred to solid supports, yielding Langmuir-Blodgett films. These films exhibited superior performance, with persisting enzyme activity. However, increasing film thickness did not enhance enzymatic activity values, indicating a surface-driven process. Subsequently, we explored the electrochemical properties of the films, revealing stability compatible with supercapacitor applications. The introduction of carbon nanotubes demonstrated a higher capacitance, indicating the potential viability of the films for energy storage applications.

15.
J Chromatogr A ; 1717: 464705, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38310702

RESUMO

This article presents the assembly and characterization of poly(diallyldimethylammonium chloride)/multi-walled carbon nanotubes (PDDA/MWCNTs) thin films on borosilicate bottles using a layer-by-layer (LBL) approach. The thin films, consisting of 10 bilayers of coating materials, were thoroughly characterized using UV-VIS spectroscopy, scanning electron microscopy (SEM), and zeta potential measurements. The modified bottles were then utilized for the extraction of analytes with diverse acid-base characteristics, including drugs, illicit drugs, and pesticides, from saliva, urine, and surface water samples. The studied analytes can be adsorbed on the surface of the LBL film mainly through hydrogen bonding and/or hydrophobic interactions. Remarkably high extraction percentages of up to 92 % were achieved, accompanied by an impressive enhancement in the analytical signal of up to 12 times when the sample volume was increased from 0.7 to 10 mL. These results highlight the outstanding extraction and sorption capabilities of the developed material. Additionally, the (PDDA/MWCNTs)10 films exhibited notable resistance to extraction and desorption processes, enabling their reuse for at least 5 cycles. The straightforward and cost-effective fabrication of these sorbent materials using the LBL technique, combined with the ability to extract target compounds during sample transportation and/or storage, renders this sample preparation method a promising alternative.


Assuntos
Nanopartículas em Multicamadas , Nanotubos de Carbono , Nanotubos de Carbono/química , Microscopia Eletrônica de Varredura
16.
Nanomaterials (Basel) ; 14(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38251174

RESUMO

The fabrication of sponge-like vanadium pentoxide (V2O5) nanostructures using vertically aligned carbon nanotubes (VACNTs) as a template is presented. The VACNTs were grown on silicon substrates by chemical vapor deposition using the Fe/Al bilayer catalyst approach. The V2O5 nanostructures were obtained from the thermal oxidation of metallic vanadium deposited on the VACNTs. Different oxidation temperatures and vanadium thicknesses were used to study the influence of these parameters on the stability of the carbon template and the formation of the V2O5 nanostructures. The morphology of the samples was analyzed by scanning electron microscopy, and the structural characterization was performed by Raman, energy-dispersive X-ray, and X-ray photoelectron spectroscopies. Due to the catalytic properties of V2O5 in the decomposition of carbonaceous materials, it was possible to obtain supported sponge-like structures based on V2O5/CNT composites, in which the CNTs exhibit an increase in their graphitization. The VACNTs can be removed or preserved by modulating the thermal oxidation process and the vanadium thickness.

17.
Talanta ; 269: 125494, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043339

RESUMO

A new type of buckypaper of MWCNT with entrapped Nimodipine (NMD) drug was constructed. NMD features a nitroaromatic group that is electroreducible, and a dihydropyridine ring that can be electrooxidized. From the perspective of the nitroaromatic group's reductive capability, we have devised amperometric and voltammetric analytical strategies, including both differential pulse and linear voltammetric techniques. These methods are implemented using glassy carbon electrodes (GCE) modified with buckypaper (BP) disks composed of multiwalled carbon nanotubes (MWCNT), which are capable of adsorbing NMD. Furthermore, by capitalizing on the oxidative capacity of the dihydropyridine ring, we have designed strategies that involve amperometry using screen-printed electrodes (SPE) modified with BP-MWCNT mini discs within a Batch Injection Analysis Cell (BIAS) designed for SPE. The developed sensor was applied successfully to determine the drug in commercial tablets. The analytical parameters of this sensor were adequate, with a recovery value of 98.24 % and detection and quantification limits of 7.01 mgL-1 and 23.35 mgL-1, respectively using the DPV method.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Nimodipina , Eletrodos , Técnicas Eletroquímicas , Limite de Detecção
18.
J Control Release ; 365: 617-639, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043727

RESUMO

Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.


Assuntos
Gelatina , Nanotubos de Carbono , Humanos , Gelatina/química , Alicerces Teciduais/química , Nanotubos de Carbono/química , Hidrogéis/química , Materiais Biocompatíveis/química , Engenharia Tecidual
19.
Artigo em Inglês | MEDLINE | ID: mdl-38066272

RESUMO

This research investigated the adsorption of propranolol (PROP) by functionalized green carbon nanotubes (MWCNT-B), assessing the influence of pH, in addition to kinetic, equilibrium, and thermodynamic studies and reuse of the material. For this purpose, speciation of PROP and the point of zero charge (pHPZC) of MWCNT-B were performed, indicating a pKa of 9.67 and pHPZC of 3.31. The adsorption tests at different pH values revealed that in the range of pH 3 to 9, there is no significant variation in PROP uptake, despite this, at pH 11, the removal decreases. Regarding PROP adsorption, the equilibrium time ranged from 30 to 90 min, and the PFO model best represented the kinetic data. The Langmuir model was more predictive in representing isotherms (R2 > 0.95), and the adsorption process was spontaneous and favorable (ΔG < - 20 kJ mol-1) and indicated exothermic behavior (ΔH = - 33 kJ mol-1) for PROP removal. In addition, the material showed satisfactory thermal regeneration results and can be reused for four cycles. The results suggest that MWCNT-B is an attractive adsorbent and exhibits effective removal of propranolol from aqueous matrices.

20.
ACS Appl Mater Interfaces ; 15(48): 56424-56432, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982226

RESUMO

The concentration of environmental pollutants needs to be monitored constantly by reliable analytical methods since they pose a public health risk. Developing simple and affordable sensors for such pollutants can allow for large-scale monitoring economically. Here, we develop a simple electrochemical sensor for sulfanilamide (SFD) quantification using a phenolic resin substrate and a CO2 laser to pyrolyze the sensor geometry over the substrate. The sensors are modified with carbon nanotubes via a simple drop-casting procedure. The carbon nanotube loading effect the electrochemical performance toward a redox probe and analytical performance for SFD detection is investigated, showing no net benefit beyond 1 mg L-1 of carbon nanotubes. The effects of the modification on the SFD oxidation are shown to be more than just an electrode area effect and possibly attributed to the fast electron transfer kinetics of the carbon nanotubes. SFD detection is performed at small solution volumes under static (800 µL) and hydrodynamic conditions (3 mL) in a fully integrated, miniaturized batch-injection analyses cell. Both methods have a similar linear range from 10.0 to 115.0 µmol L-1 and high selectivity for SFD determination. Both systems are used to quantify SFD in real samples as a proof of concept, showcasing the proposed device's applicability as a sensor for environmental and public health monitoring of SFD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA