Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251144

RESUMO

The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4'-Di(carbazol-9-yl)-1,1'-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Monomers were electropolymerized through cyclic voltammetry and chronoamperometry techniques. Computational methods at the B3LYP/def2-TZVP level were employed to investigate the structural and electrochemical properties of the monomers. The electrochemical detection of MNZ utilized the linear sweep voltammetry technique. Surface characterization through SEM and XPS confirmed the proper electrodeposition of polymer films. Notably, MPN-GCEs exhibited higher detection signals compared to bare GCEs up to 3.6 times in the case of PTPTCzSiOH-GCEs. This theoretical study provides insights into the structural, chemical, and electronic properties of the polymers. The findings suggest that polymer-modified GCEs hold promise as candidates for the development of electrochemical sensors.

2.
Mikrochim Acta ; 190(12): 461, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926729

RESUMO

Microfluidic cotton thread-based electroanalytical devices (µTEDs) are analytical systems with attractive features such as spontaneous passive flow, low cost, minimal waste production, and good sensitivity. Currently, sample injection in µTEDs is performed by hand using manual micropipettes, which have drawbacks such as inconstant speed and position, dependence of skilled analysts, and need of physical effort of operator during prolonged times, leading to poor reproducibility and risk of strain injury. As an alternative to these inconveniences, we propose, for the first time, the use of electronic micropipettes to carry out automated injections in µTEDs. This new approach avoids all disadvantages of manual injections, while also improving the performance, experience, and versatility of µTEDs. The platform developed here is composed by three 3D-printed electrodes (detector) attached to a 3D-printed platform containing an adjustable holder that keeps the electronic pipette in the same x/y/z position. As a proof-of-concept, both injection modes (manual and electronic) were compared using three model analytes (nitrite, paracetamol, and 5-hydroxytryptophan) on µTED with amperometric detection. As result, improved analytical performance (limits of detection between 2.5- and 5-fold lower) was obtained when using electronic injections, as well as better repeatability/reproducibility and higher analytical frequencies. In addition, the determination of paracetamol in urine samples suggested better precision and accuracy for automated injection. Thus, electronic injection is a great advance and changes the state-of-art of µTEDs, mainly considering the use of more modern and versatile electronic pipettes (wider range of pre-programmed modes), which can lead to the development of even more automated systems.

3.
Mikrochim Acta ; 190(8): 312, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470849

RESUMO

The development of miniaturized, sustainable and eco-friendly analytical sensors with low production cost is a current trend worldwide. Within this idea, this work presents  the innovative use of masked stereolithography (MSLA) 3D-printed substrates for the easy fabrication of pencil-drawn electrochemical sensors (MSLA-3D-PDE). The use of a non-toxic material such as pencil (electrodes) together with a biodegradable 3D printing resin (substrate) allowed the production of devices that are quite cheap (ca. US$ 0.11 per sensor) and with low environmental impact. Compared to paper, which is the most used substrate for manufacturing pencil-drawn electrodes, the MSLA-3D-printed substrate has the advantages of not absorbing water (hydrophobicity) or becoming crinkled and weakened when in contact with solutions. These features provide more reproducible, reliable, stable, and long-lasting sensors. The MSLA-3D-PDE, in conjunction with the custom cell developed, showed excellent robustness and electrochemical performance similar to that observed of the glassy carbon electrode, without the need of any activation procedure. The analytical applicability of this platform was explored through the quantification of omeprazole in pharmaceuticals. A limit of detection (LOD) of 0.72 µmol L-1 was achieved, with a linear range of 10 to 200 µmol L-1. Analysis of real samples provided results that were highly concordant with those obtained by UV-Vis spectrophotometry (relative error ≤ 1.50%). In addition, the greenness of this approach was evaluated and confirmed by a quantitative methodology (Eco-Scale index). Thus, the MSLA-3D-PDE appears as a new and sustainable tool with great potential of use in analytical electrochemistry.

4.
Talanta ; 252: 123873, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041313

RESUMO

Nowadays, the use of pesticides in world agriculture is fundamental. However, it leads to an increase in the illegal sale and smuggling of these products in various parts of the world, mainly in Brazil. Therefore, the development of new analytical methods for screening and analysis of these kind of substances is a relevant issue. We present in this work, for the first time, an electrochemical study and a novel electroanalytical method for determination of fungicide benzovindiflupyr (BENZO). According to our knowledge, the electrochemical behavior of BENZO, as well as its voltammetric determination, have never been reported before. The sensors used here consisted of disposable pencil graphite electrodes (PGEs). On this electrode surface and at optimal pH, BENZO behaved according to a quasi-reversible system and showed two voltammetric peaks, one anodic at Ep = +0.59 V and another cathodic at Ep = +0.43 V. The analytical studies utilized BENZO anodic sweep and square-wave adsorptive stripping voltammetry (SWAdSV). All experimental and instrumental parameters were fully investigated and optimized. Under the best conditions, a calibration plot was obtained in the concentration range from 0.10 to 12.5 µmol L-1. The limits of detection (LOD) and quantification (LOQ) achieved were 0.023 and 0.076 µmol L-1, respectively. An electrochemical mechanism for BENZO oxidation was also proposed. The method developed here was successfully employed for the qualitative and quantitative forensic analysis of BENZO in smuggled products, showing good accuracy (recoveries ca. 104%) and precision (relative standard deviation < 5%). These data attest the potential for use of this method in forensic area.


Assuntos
Fungicidas Industriais , Grafite , Grafite/química , Eletrodos , Norbornanos , Técnicas Eletroquímicas
5.
Curr Res Food Sci ; 5: 351-359, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198994

RESUMO

The electrochemical behavior of Saccharomyces cerevisiae sp was studied using a glassy carbon electrode (GCE) modified with Nafion-dispersed oxidized multi-walled carbon nanotubes (OMWCNT). The morphology was studied using scanning electron microscopy (SEM), showing that the yeast sticks to the carbon nanotube surface instead of the glassy carbon surface. The redox couple Fe(CN)6 4-/Fe(CN)6 3- was used to determine the electroactive area and the heterogeneous transfer constant, which increased 80.5% and 108% respectively by the presence of nanotubes. The studies of the pH effect showed that the anodic potential decreases at alkaline pH and that the highest current intensity occurs at a pH value of 7.00. Studies of the scan rate effect have shown that yeast oxidation is an irreversible mixed control process in which two electrons participate. The relationship between yeast concentration and the anodic current density was studied using different electrochemical techniques obtaining the best analytical parameters through chronoamperometry. The linear range was between 3.36 and 6.52 g L-1, the limit of detection (LOD) and the limit of quantification (LOQ) were 0.98 g L-1 and 3.36 g L-1 respectively, and the sensibility obtained was 0.086 µA L g-1 mm-2. These results show that the multi-walled carbon nanotubes in water and Nafion® allow obtaining an anodic signal corresponding to the yeast, which facilitates its quantification through electrochemical methodologies, favoring the reduction of analysis times and costs compared with other techniques.

6.
Talanta ; 240: 123201, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998146

RESUMO

Under controlled dispersion conditions, sample injection towards a detector opened essential fields for the Analytical Chemistry fast development methods. Flow injection analysis (FIA) and batch injection analysis (BIA) systems are crucial for injecting the sample in these analytical methods. The BIA system eliminated the flow manifold, with samples injected directly onto the detector inside the batch injection cell. Paper was slightly evaluated coupled to FIA, and no reports were found associated with BIA. Still, it can potentially reduce the BIA manifold by removing the batch injection cell based on the capillarity properties to disperse the injected solution over the detection system. Hence, this article reported the first work coupling batch-injection analysis and microfluidic paper-based analytical device (BIA-µPAD) with pencil-drawn electrodes directly attached to the paper using a CO2 laser pre-treated chromatographic paper. The laser pretreatment of the paper (optimized conditions: 6.5% laser power, 12 mm s-1 scan rate, and 12 mm output distance) was essential to enhance the electrochemical response for ferri/ferrocyanide redox couple and paracetamol (PAR), as shown by spectroscopic and electrochemical techniques. The proposed BIA-µPAD was evaluated using pharmaceutical paracetamol samples as proof-of-concept (optimized conditions: 15 µL injected volume and 6.4 µL s-1 dispensing rate), obtaining good linearity (R = 0.9961) and recovery values ranging from 95 to 103%. Repeatability (n = 16) and reproducibility (n = 9) tests with 1 mmol L-1 PAR also presented well relative standard deviation (RSD) results of 5.1% and 6.6%, respectively. A sampling frequency of 76 h-1 was obtained, which is a similar value compared with conventional BIA apparatus. Limits of detection and quantification were estimated in 0.046 and 0.154 mmol L-1, respectively. Additionally, an improvement in the current response and the sample throughput was observed when comparing FIA and BIA-µPADs, attesting the applicability of the proposed device and opening for new possibilities related to paper-based devices coupled with flow techniques.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Eletroquímicas , Eletrodos , Dispositivos Lab-On-A-Chip , Papel , Reprodutibilidade dos Testes
7.
Mikrochim Acta ; 188(10): 359, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599426

RESUMO

Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10-6 mol L-1 range with a limit of detection of 8.0 × 10-7 mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10-7 mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. "Red" is reduced form and "Oxi" is oxidized form of analytes.

8.
Talanta ; 223(Pt 2): 121780, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298285

RESUMO

A new composite electrode (G-PSE) was developed from graphite powder and expanded polystyrene (EPS, Styrofoam) by simply dissolving the foam in chloroform, incorporating the graphite particles under mixing and volatilizing the solvent at 80 °C. The resulting rigid black composite can be softened with acetone and so it can easily be molded to any shape, e.g., into a PTFE tube with an electric contact, to build the electrode. A 75% graphite content (w/w) was found appropriate for preparing the G-PSE with a working potential similar to that of carbon paste electrodes, superior mechanical stability and a much faster response to ferrocyanide, close to reversible and similar to that of the much more expensive glassy carbon electrode. Applications of the G-PSE to dipyrone and paracetamol quantification in pharmaceutical formulations were demonstrated. The results accomplished by flow injection analysis with amperometric detection at the G-PSE were successfully validated against standards methods.

9.
ACS Appl Mater Interfaces ; 9(13): 11959-11966, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28296386

RESUMO

A simple and fast fabrication method to create high-performance pencil-drawn electrochemical sensors is reported for the first time. The sluggish electron transfer observed on bare pencil-drawn surfaces was enhanced using two electrochemical steps: first oxidizing the surface and then reducing it in a subsequent step. The heterogeneous rate constant was found to be 5.1 × 10-3 cm s-1, which is the highest value reported so far for pencil-drawn surfaces. We mapped the origin of such performance by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Our results suggest that the oxidation process leads to chemical and structural transformations on the electrode surface. As a proof-of-concept, we modified the pencil-drawn surface with Meldola's blue to electrocatalytically detect nicotinamide adenine dinucleotide (NADH). The electrochemical device exhibited the highest catalytic constant (1.7 × 105 L mol-1 s-1) and the lowest detection potential for NADH reported so far in paper-based electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA