Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 42(5): 1070-1083, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35022787

RESUMO

Calcium (Ca2+) signaling is one of the earliest factors to coordinate plant adaptive responses. As direct sensors and activators of Ca2+ signals, calcium-dependent protein kinases (CDPKs) were reported to be widely involved in regulating different biotic and abiotic stress stimuli. In this study, 32 Hevea brasiliensis CDPK (HbCDPK) genes were predicted and classified into four subgroups. Among them, the full-length coding sequences of 28 HbCDPK genes were confirmed by RT-PCR and verified by sequencing. Putative cis-elements assay in the promoters of HbCDPKs showed that most of the HbCDPK genes contained gibberellic acid-responsive element (GARE), abscisic acid-responsive element (ABRE), salicylic acid-responsive element (SARE), defense and stress responsive element (TC-rich repeats) and low-temperature response element (LTR), which could be activated by different biotic and abiotic stresses. Real-time PCR analysis indicated that 28 HbCDPK genes respond to infection of pathogenic fungi and a variety of phytohormones. Subcellular localization was observed with most HbCDPKs located in cell membrane, cytoplasm or organelles. Some HbCDPKs were confirmed to cause reactive oxygen species (ROS) production and accumulation in rubber tree mesophyll protoplast directly. HbCDPK5 was strongly induced by the inoculation with Colletotrichum gloeosporioides and was chosen for further analysis. HbCDPK5 localized to the cell membrane and cytoplasm, and obviously regulated the accumulation of ROS in rubber tree mesophyll protoplast. Overexpression of HbCDPK5 in Arabidopsis enhanced the resistance to Botrytis cinerea. These results indicate that rubber tree CDPK genes play important roles in plant disease resistance.


Assuntos
Arabidopsis , Hevea , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Hevea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 19(4)2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565813

RESUMO

Natural rubber latex production can be improved by ethylene stimulation in the rubber tree (Hevea brasiliensis). However, the expression levels of most functional proteins for natural rubber biosynthesis are not induced after ethylene application, indicating that post-translational modifications, especially protein phosphorylation, may play important roles in ethylene signaling in Hevea. Here, we performed a comprehensive investigation on evolution, ethylene-induced expression and protein-protein interaction of calcium-dependent protein kinases (CPKs), an important serine/threonine protein kinase family, in Hevea. Nine duplication events were determined in the 30 identified HbCPK genes. Expression profiling of HbCPKs in three rubber tree cultivars with low, medium and high ethylene sensitivity showed that HbCPK6, 17, 20, 22, 24, 28 and 30 are induced by ethylene in at least one cultivar. Evolution rate analysis suggested accelerated evolution rates in two paralogue pairs, HbCPK9/18 and HbCPK19/20. Analysis of proteomic data for rubber latex after ethylene treatment showed that seven HbCPK proteins could be detected, including six ethylene-induced ones. Protein-protein interaction analysis of the 493 different abundant proteins revealed that protein kinases, especially calcium-dependent protein kinases, possess most key nodes of the interaction network, indicating that protein kinase and protein phosphorylation play important roles in ethylene signaling in latex of Hevea. In summary, our data revealed the expression patterns of HbCPK family members and functional divergence of two HbCPK paralogue pairs, as well as the potential important roles of HbCPKs in ethylene-induced rubber production improvement in Hevea.


Assuntos
Etilenos/farmacologia , Hevea/metabolismo , Proteínas Quinases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Hevea/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética
3.
FEBS Open Bio ; 7(1): 4-24, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28097084

RESUMO

Calcium-dependent protein kinases (CDPKs or CPKs) play important roles in various physiological processes of plants, including growth and development, stress responses and hormone signaling. Although the CDPK gene family has been characterized in several model plants, little is known about this gene family in Hevea brasiliensis (the Para rubber tree). Here, we characterize the entire H. brasiliensis CDPK and CDPK-related kinase (CRK) gene families comprising 30 CDPK genes (HbCPK1 to 30) and nine CRK genes (HbCRK1 to 9). Structure and phylogeny analyses of these CDPK and CRK genes demonstrate evolutionary conservation in these gene families across H. brasiliensis and other plant species. The expression of HbCPK and HbCRK genes was investigated via Solexa sequencing in a range of experimental conditions (different tissues, phases of leaf development, ethylene treatment, and various abiotic stresses). The results suggest that HbCPK and HbCRK genes are important components in growth, development, and stress responses of H. brasiliensis. Parallel studies on the CDPK and CRK gene families were also extended to five other plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Manihot esculenta, and Ricinus communis). The CDPK and CRK genes from different plant species that exhibit similar expression patterns tend to cluster together, suggesting a coevolution of gene structure and expression behavior in higher plants. The results serve as a foundation to further functional studies of these gene families in H. brasiliensis as well as in the whole plant kingdom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA