Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Essays Biochem ; 67(1): 63-75, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36636961

RESUMO

Astrocytes are a heterogenous population of macroglial cells spread throughout the central nervous system with diverse functions, expression signatures, and intricate morphologies. Their subcellular compartments contain a distinct range of mitochondria, with functional microdomains exhibiting widespread activities, such as controlling local metabolism and Ca2+ signaling. Ca2+ is an ion of utmost importance, both physiologically and pathologically, and participates in critical central nervous system processes, including synaptic plasticity, neuron-astrocyte integration, excitotoxicity, and mitochondrial physiology and metabolism. The mitochondrial Ca2+ handling system is formed by the mitochondrial Ca2+ uniporter complex (MCUc), which mediates Ca2+ influx, and the mitochondrial Na+/Ca2+ exchanger (NCLX), responsible for most mitochondrial Ca2+ efflux, as well as additional components, including the mitochondrial permeability transition pore (mtPTP). Over the last decades, mitochondrial Ca2+ handling has been shown to be key for brain homeostasis, acting centrally in physiopathological processes such as astrogliosis, astrocyte-neuron activity integration, energy metabolism control, and neurodegeneration. In this review, we discuss the current state of knowledge regarding the mitochondrial Ca2+ handling system molecular composition, highlighting its impact on astrocytic homeostasis.


Assuntos
Astrócitos , Cálcio , Astrócitos/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
2.
Curr Neuropharmacol ; 21(2): 164-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34951388

RESUMO

Alzheimer's disease (AD) was first identified more than 100 years ago, yet aspects pertaining to its origin and the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease-modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning, as well as its role in pathological conditions, remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD, and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. AD-related alterations in Ca2+ signalling, APP processing, and Aß load, as well as AD-related neurodegeneration, are influenced by glial mGluRs. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review, we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.


Assuntos
Doença de Alzheimer , Receptores de Glutamato Metabotrópico , Humanos , Doença de Alzheimer/patologia , Receptores de Glutamato Metabotrópico/fisiologia , Neuroglia/metabolismo , Transdução de Sinais/fisiologia , Progressão da Doença
3.
Cell Calcium ; 106: 102622, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908318

RESUMO

The accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homoeostasis. If this cannot be done, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as an intracellular messenger, the precise mechanism(s) by which Ca2+ release affects the UPR remains unknown. Tethering a genetically encoded Ca2+ indicator (GCamP6) to the ER membrane revealed novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, induced by tunicamycin (Tm), an N-glycosylation inhibitor, as well as in a cell model deficient in all three inositol triphosphate receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons and that the Ca2+ microdomains impact (PKR)-like-ER kinase (PERK), an UPR sensor, activation. These findings reveal the existence of a Ca2+ signal mechanism by which stressor-mediated Ca2+ release regulates ER stress.


Assuntos
Estresse do Retículo Endoplasmático , eIF-2 Quinase , Apoptose , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Transdução de Sinais , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
4.
Clin Exp Pharmacol Physiol ; 49(7): 759-766, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527704

RESUMO

cis-[Ru(bpy)2(py)NO2](PF6) (RuBPY) is a ruthenium complex nitric oxide (NO) donor that presents a nitrite in its moiety and has been shown to induce vasodilation in various arteries, as well as arterial pressure reduction with no changes in heart rate. Because vascular tone is highly dependent on the cytosolic calcium concentration ([Ca2+ ]c), the current study aimed to investigate the effects of RuBPY on the intracellular mobilization of calcium stores of rat aortic vascular smooth muscle cells. Vascular reactivity experiments were performed in isolated aortic rings that were contracted with a high concentration of KCl or phenylephrine (Phe). Moreover, primary cultured vascular smooth muscle cells were used to measure [Ca2+ ]c by confocal microscopy. The NO donor RuBPY decreased the [Ca2+ ]c and reduced KCl and Phe-induced contractile responses. The selective inhibitor of sarco-endoplasmic Ca-ATPase (SERCA) with thapsigargin impaired the effect of RuBPY on Phe-induced contractile response. RuBPY also reduced caffeine-induced contraction, and the contraction dependent on the capacitive Ca2+ influx. Therefore, our results suggest that NO released from RuBPY decreased [Ca2+ ]c by calcium influx blockade and activation of guanylyl-cyclase-cGMP-GK pathway. These results indicate that RuBPY increases Ca2+ storage in the sarcoplasmic reticulum by SERCA activation and also by capacitive Ca2+ influx inhibition, which is dependent on the intracellular release of nitric oxide from this compound.


Assuntos
Cálcio , Rutênio , Animais , Cálcio/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fenilefrina/farmacologia , Ratos , Rutênio/farmacologia , Vasodilatação
5.
Genes (Basel) ; 11(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560106

RESUMO

Yeast biomass is recycled in the process of bioethanol production using treatment with dilute sulphuric acid to control the bacterial population. This treatment can lead to loss of cell viability, with consequences on the fermentation yield. Thus, the aim of this study was to define the functional cellular responses to inorganic acid stress. Saccharomyces cerevisiae strains with mutation in several signalling pathways, as well as cells expressing pH-sensitive GFP derivative ratiometric pHluorin, were tested for cell survival and cytosolic pH (pHc) variation during exposure to low external pH (pHex). Mutants in calcium signalling and proton extrusion were transiently sensitive to low pHex, while the CWI slt2Δ mutant lost viability. Rescue of this mutant was observed when cells were exposed to extreme low pHex or glucose starvation and was dependent on the induced reduction of pHc. Therefore, a lowered pHc leads to a complete growth arrest, which protects the cells from lethal stress and keeps cells alive. Cytosolic pH is thus a signal that directs the growth stress-tolerance trade-off in yeast. A regulatory model was proposed to explain this mechanism, indicating the impairment of glucan synthesis as the primary cause of low pHex sensitivity.


Assuntos
Ácidos/metabolismo , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Ácidos Sulfúricos/metabolismo , Ácidos/efeitos adversos , Sinalização do Cálcio/genética , Metabolismo dos Carboidratos/genética , Sobrevivência Celular/genética , Parede Celular/metabolismo , Citosol/metabolismo , Etanol/metabolismo , Fermentação/genética , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Ácidos Sulfúricos/efeitos adversos
6.
Cell Death Discov ; 5: 135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552142

RESUMO

Annexin A1 (AnxA1) modulates neutrophil life span and bone marrow/blood cell trafficking thorough activation of formyl-peptide receptors (FPRs). Here, we investigated the effect of exogenous AnxA1 on haematopoiesis in the mouse. Treatment of C57BL/6 mice with recombinant AnxA1 (rAnxA1) reduced the granulocyte-macrophage progenitor (GMP) population in the bone marrow, enhanced the number of mature granulocytes Gr-1+Mac-1+ in the bone marrow as well as peripheral granulocytic neutrophils and increased expression of mitotic cyclin B1 on hematopoietic stem cells (HSCs)/progenitor cells (Lin-Sca-1+c-Kit+: LSK). These effects were abolished by simultaneous treatment with Boc-2, an FPR pan-antagonist. In in vitro studies, rAnxA1 reduced both HSC (LSKCD90lowFLK-2-) and GMP populations while enhancing mature cells (Gr1+Mac1+). Moreover, rAnxA1 induced LSK cell proliferation (Ki67+), increasing the percentage of cells in the S/G2/M cell cycle phases and reducing Notch-1 expression. Simultaneous treatment with WRW4, a selective FPR2 antagonist, reversed the in vitro effects elicited by rAnxA1. Treatment of LSK cells with rAnxA1 led to phosphorylation of PCLγ2, PKC, RAS, MEK, and ERK1/2 with increased expression of NFAT2. In long-term bone marrow cultures, rAnxA1 did not alter the percentage of LSK cells but enhanced the Gr-1+Mac-1+ population; treatment with a PLC (U73122), but not with a PKC (GF109203), inhibitor reduced rAnxA1-induced phosphorylation of ERK1/2 and Elk1. Therefore, we identify here rAnxA1 as an inducer of HSC/progenitor cell differentiation, favouring differentiation of the myeloid/granulocytic lineage, via Ca2+/MAPK signalling transduction pathways.

7.
Plant Physiol Biochem ; 118: 377-384, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710945

RESUMO

Calcium-dependent protein kinases (CDPKs) regulate plant development and many stress signalling pathways through the complex cytosolic [Ca2+] signalling. The genome of Ostreococcus tauri (Ot), a model prasinophyte organism that is on the base of the green lineage, harbours three sequences homologous to those encoding plant CDPKs with the three characteristic conserved domains (protein kinase, autoregulatory/autoinhibitory, and regulatory domain). Phylogenetic and structural analyses revealed that putative OtCDPK proteins are closely related to CDPKs from other Chlorophytes. We functionally characterised the first marine picophytoeukaryote CDPK gene (OtCDPK1) and showed that the expression of the three OtCDPK genes is up-regulated by nitrogen depletion. We conclude that CDPK signalling pathway might have originated early in the green lineage and may play a key role in prasinophytes by sensing macronutrient changes in the marine environment.


Assuntos
Sinalização do Cálcio/fisiologia , Clorófitas/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Nitrogênio/metabolismo , Proteínas de Plantas/biossíntese , Proteínas Quinases/biossíntese
8.
Biol Res ; 49(1): 27, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245705

RESUMO

BACKGROUND: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19(+) B cells, CD56(bright) and CD56(dim) cell populations from CFS/ME patients. RESULTS: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56(bright) TRPM3 35.72 % ± 7.37; CD56(dim) 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19(+) B cells (1.56 ± 0.191) and CD56(bright) NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19(+) B lymphocytes. CD56(bright) NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients. CONCLUSIONS: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.


Assuntos
Linfócitos B/metabolismo , Síndrome de Fadiga Crônica/sangue , Células Matadoras Naturais/metabolismo , Canais de Cátion TRPM/metabolismo , Análise de Variância , Canais de Cálcio/sangue , Estudos de Casos e Controles , Inibidores Enzimáticos/uso terapêutico , Síndrome de Fadiga Crônica/tratamento farmacológico , Feminino , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Tapsigargina/uso terapêutico
9.
Biol. Res ; 49: 1-8, 2016. graf
Artigo em Inglês | LILACS | ID: biblio-950854

RESUMO

BACKGROUND: Transient receptor potential melastatin 3 (TRPM3) cation channels are ubiquitously expressed by multiple cells and have an important regulatory role in calcium-dependent cell signalling to help maintain cellular homeostasis. TRPM3 protein expression has yet to be determined on Natural Killer (NK) cells and B lymphocytes. Multiple single nucleotide polymorphisms have been reported in TRPM3 genes from isolated peripheral blood mononuclear cells, NK and B cells in Chronic fatigue syndrome/Myalgic encephalomyelitis (CFS/ME) patients and have been proposed to correlate with illness presentation. The object of the study was to assess TRPM3 surface expression on NK and B lymphocytes from healthy controls, followed by a comparative investigation examining TRPM3 surface expression, and cytoplasmic and mitochondrial calcium influx in CD19+ B cells, CD56bnght and CD56dim cell populations from CFS/ME patients. RESULTS: TRPM3 cell surface expression was identified for NK and B lymphocytes in healthy controls (CD56bright TRPM3 35.72 % ± 7.37; CD56dim 5.74 % ± 2.00; B lymphocytes 2.05 % ± 0.19, respectively). There was a significant reduction of TRPM3 surface expression on CD19+ B cells (1.56 ± 0.191) and CD56bright NK cells (17.37 % ± 5.34) in CFS/ME compared with healthy controls. Anti-CD21 and anti-IgM conjugated biotin was cross-linked with streptavidin,and subsequently treatment with thapsigargin. This showed a significant reduction in cytoplasmic calcium ion concentration in CD19+ B lymphocytes. CD56bright NK cells also had a significant decrease in cytoplasmic calcium in the presence of 2-APB and thapsigargin in CFS/ME patients. CONCLUSIONS: The results from this preliminary investigation identify, for the first time, TRPM3 surface expression on both NK and B lymphocytes in healthy controls. We also report for the first time, significant reduction in TRPM3 cell surface expression in NK and B lymphocytes, as well as decreased intracellular calcium within specific conditions in CFS/ME patients. This warrants further examination of these pathways to elucidate whether TRPM3 and impaired calcium mobilisation has a role in CFS/ME.


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Linfócitos B/metabolismo , Células Matadoras Naturais/metabolismo , Síndrome de Fadiga Crônica/sangue , Canais de Cátion TRPM/metabolismo , Valores de Referência , Canais de Cálcio/sangue , Estudos de Casos e Controles , Síndrome de Fadiga Crônica/tratamento farmacológico , Análise de Variância , Imunofenotipagem/métodos , Tapsigargina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Citometria de Fluxo/métodos
10.
Liver Int ; 35(4): 1162-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24814243

RESUMO

BACKGROUND & AIMS: Liver regeneration is a multistage process that unfolds gradually, with different mediators acting at different stages of regeneration. Calcium (Ca(2+) ) signalling is essential for liver regeneration. In hepatocytes, Ca(2+) signalling results from the activation of inositol 1,4,5-trisphosphate receptors (InsP3 R) of which two of the three known isoforms are expressed (InsP3 R-I and InsP3 R-II). Here, we investigated the role of the InsP3 R-I-dependent Ca(2+) signals in hepatic proliferation during liver regeneration. METHODS: Partial hepatectomy (HX) in combination with knockdown of InsP3 R-I (AdsiRNA-I) was used to evaluate the role of InsP3 R-I on liver regeneration and hepatocyte proliferation, as assessed by liver to body mass ratio, PCNA expression, immunoblots and measurements of intracellular Ca(2+) signalling. RESULTS: AdsiRNA-I efficiently infected the liver as demonstrated by the expression of ß-galactosidase throughout the liver lobules. Moreover, this construct selectively and efficiently reduced the expression of InsP3 R-I, as evaluated by immunoblots. Expression of AdsiRNA-I in liver decreased peak Ca(2+) amplitude induced by vasopressin in isolated hepatocytes 2 days after HX. Reduced InsP3 R-I expression prior to HX also delayed liver regeneration, as measured by liver to body weight ratio, and reduced hepatocyte proliferation, as evaluated by PCNA staining, at the same time point. At later stages of regeneration, control hepatocytes showed a decreased expression of InsP3 R, as well as reduced InsP3 R-mediated Ca(2+) signalling, events that did not affect liver growth. CONCLUSION: Together, these results show that InsP3 R-I-dependent Ca(2+) signalling is an early triggering pathway required for liver regeneration.


Assuntos
Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Regeneração Hepática , Fígado/metabolismo , Animais , Biomarcadores/metabolismo , Células CHO , Proliferação de Células , Cricetulus , Células HEK293 , Hepatectomia/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Fígado/fisiopatologia , Fígado/cirurgia , Masculino , Tamanho do Órgão , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA