Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212065

RESUMO

Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)-acceptor (DPP)-donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D-A (DDP)-D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669280

RESUMO

Understanding the exciton dissociation process in organic solar cells is a fundamental issue for the design of high-performance photovoltaic devices. In this article, a parameterized quantum theory based on a coarse-grained tight-binding model plus non-local electron-hole interactions is presented, while the diffusion and recombination of excitons are studied in a square lattice of excitonic states, where a real-space renormalization method on effective chains has been used. The Hamiltonian parameters are determined by fitting the measured quantum efficiency spectra and the theoretical short-circuit currents without adjustable parameters show a good agreement with the experimental ones obtained from several polymer:fullerene and polymer:polymer heterojunctions. Moreover, the present study reveals the degree of polymerization and the true driving force at donor-acceptor interface in each analyzed organic photovoltaic device.

3.
J Mol Model ; 24(1): 32, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282561

RESUMO

The optical properties of systems composed of the polymers PolyeraActivInk™ N2200 and P3HT are experimentally and theoretically investigated using UV-Vis spectroscopy and time-dependent density functional theory calculations, respectively. From a theoretical point of view, we carried out an analysis considering several functionals and model oligomers of different sizes to mimic the polymers. As our studies were performed with and without solvents, a first important result regards the fact that, by considering solvent effects, a better agreement between theoretical and experimental results could be achieved. Our findings also show that an optimally tuned functional is better suited to describe the experimental absorption profile than a hybrid one for the flexible polymer (P3HT). For the almost rigid polymer considered here (N2200), on the other hand, hybrid functionals may perform better than tuned functionals.


Assuntos
Simulação por Computador , Polímeros/química , Tiofenos/química , Solventes/química , Análise Espectral , Raios Ultravioleta
4.
Materials (Basel) ; 8(7): 4258-4272, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28793438

RESUMO

Our group previously reported the synthesis of four polythiophene derivatives (P1-P4) used for solar cells. The cells were prepared under room conditions by spin coating, leading to low efficiencies. However, after the addition of 6-nitro-3-(E)-3-(4-dimethylaminophenyl)allylidene)-2,3-dihydrobenzo[d]-[1,3,2] oxazaborole (M1) to their active layers, the efficiencies of the cells showed approximately a two-fold improvement. In this paper, we study this enhancement mechanism by performing ultrafast transient absorption (TA) experiments on the active layer of the different cells. Our samples consisted of thin films of a mixture of PC61BM with the polythiophenes derivatives P1-P4. We prepared two versions of each sample, one including the molecule M1 and another without it. The TA data suggests that the efficiency improvement after addition of M1 is due not only to an extended absorption spectrum towards the infrared region causing a larger population of excitons but also to the possible creation of additional channels for transport of excitons and/or electrons to the PC61BM interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA