Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37627119

RESUMO

Boron neutron capture therapy (BNCT) is a tumor-selective particle radiotherapy. It combines preferential boron accumulation in tumors and neutron irradiation. The recent initiation of BNCT clinical trials employing hospital-based accelerators rather than nuclear reactors as the neutron source will conceivably pave the way for new and more numerous clinical trials, leading up to much-needed randomized trials. In this context, it would be interesting to consider the implementation of new boron compounds and strategies that will significantly optimize BNCT. With this aim in mind, we analyzed, in this review, those articles published between 2020 and 2023 reporting new boron compounds and strategies that were proved therapeutically useful in in vitro and/or in vivo radiobiological studies, a critical step for translation to a clinical setting. We also explored new pathologies that could potentially be treated with BNCT and newly developed theranostic boron agents. All these radiobiological advances intend to solve those limitations and questions that arise during patient treatment in the clinical field, with BNCT and other therapies. In this sense, active communication between clinicians, radiobiologists, and all disciplines will improve BNCT for cancer patients, in a cost- and time-effective way.

2.
Mol Pharm ; 20(5): 2702-2713, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013916

RESUMO

Glioblastoma (GBM), as the most central nervous system (CNS) intractable disease, has spoiled millions of lives due to its high mortality. Even though several efforts have been made, the existing treatments have had limited success. In this sense, we studied a lead compound, the boron-rich selective epidermal growth factor receptor (EGFR)-inhibitor hybrid 1, as a potential drug for GBM treatment. For this end, we analyzed the in vitro activity of hybrid 1 in a glioma/primary astrocytes coculture, studying cellular death types triggered by treatment with this compound and its cellular localizations. Additionally, hybrid 1 concentrated boron in glioma cells selectively and more effectively than the boron neutron capture therapy (BNCT)-clinical agent 10B-l-boronophenylalanine and thus displayed a better in vitro-BNCT effect. This encouraged us to analyze hybrid 1 in vivo. Therefore, immunosuppressed mice bearing U87 MG human GBM were treated with both 1 and 1 encapsulated in a modified liposome (recognized by brain-blood barrier peptide transporters), and we observed a potent in vivo per se antitumor activity (tumor size decrease and animal survival increase). These data demonstrate that 1 could be a promising new targeted therapy for GBM.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Humanos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Boro , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Glioma/tratamento farmacológico , Glioma/radioterapia , Glioma/metabolismo , Glioblastoma/tratamento farmacológico
3.
Artigo em Inglês | MEDLINE | ID: mdl-36130136

RESUMO

Translational research in adequate experimental models is necessary to optimize boron neutron capture therapy (BNCT) for different pathologies. Multiple radiobiological in vivo studies have been performed in a wide variety of animal models, studying multiple boron compounds, routes of compound administration, and a range of administration strategies. Animal models are useful for the study of the stability and potential toxicity of new boron compounds or delivery systems, BNCT theranostic strategies, the evaluation of biomarkers to monitor BNCT therapeutic and adverse effects, and to study the BNCT immune response by the host against tumor cells. This article will mention examples of these studies, highlighting the importance of experimental animal models for the advancement of BNCT. Animal models are essential to design novel, safe, and effective clinical BNCT protocols for existing or new targets for BNCT.

4.
Life (Basel) ; 12(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888170

RESUMO

BACKGROUND: BNCT (Boron Neutron Capture Therapy) is a tumor-selective particle radiotherapy that combines preferential boron accumulation in tumors and neutron irradiation. Although p-boronophenylalanine (BPA) has been clinically used, new boron compounds are needed for the advancement of BNCT. Based on previous studies in colon tumor-bearing mice, in this study, we evaluated MID:BSA (maleimide-functionalized closo-dodecaborate conjugated to bovine serum albumin) biodistribution and MID:BSA/BNCT therapeutic effect on tumors and associated radiotoxicity in the hamster cheek pouch oral cancer model. METHODS: Biodistribution studies were performed at 30 mg B/kg and 15 mg B/kg (12 h and 19 h post-administration). MID:BSA/BNCT (15 mg B/kg, 19 h) was performed at three different absorbed doses to precancerous tissue. RESULTS: MID:BSA 30 mg B/kg protocol induced high BSA toxicity. MID:BSA 15 mg B/kg injected at a slow rate was well-tolerated and reached therapeutically useful boron concentration values in the tumor and tumor/normal tissue ratios. The 19 h protocol exhibited significantly lower boron concentration values in blood. MID:BSA/BNCT exhibited a significant tumor response vs. the control group with no significant radiotoxicity. CONCLUSIONS: MID:BSA/BNCT would be therapeutically useful to treat oral cancer. BSA toxicity is a consideration when injecting a compound conjugated to BSA and depends on the animal model studied.

5.
Expert Rev Mol Med ; 24: e14, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35357286

RESUMO

Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.


Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Terapia por Captura de Nêutron de Boro/métodos , Humanos , Nêutrons , Qualidade de Vida , Radiobiologia
6.
Med Phys ; 49(2): 1276-1285, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34851535

RESUMO

PURPOSE: A new type of electronic dosimeter is presented, capable of discerning between the doses of gamma photons and neutrons in a mixed beam as found in boron neutron capture therapy (BNCT). We introduce a real-time dosimeter based on a thick gate field oxide field effect transistor (FOXFET) covered with a neutron converter layer containing gadolinium. METHODS: To sensitize the FOXFET dosimeter to neutron fluxes, a converter layer containing gadolinium oxide particles embedded in photoresines was deposited over the sensor surface. Mixed neutron-gamma field configurations with different neutron energy spectra were used to assess the FOXFET response, considering different thicknesses of the neutron converter layer. RESULTS: The total gamma sensitivity of the devices resulted to be 43 mV/Gy. The responses of sensors with different converter layer thicknesses irradiated with different neutron spectra are simulated using GEANT4 code. The response to photons is not significantly modified with thin conversion layers when used in water medium. CONCLUSIONS: A real-time dosimeter comprising a pair of FOXFET sensors-only one of them with a gadolinium neutron converter layer-allows the simultaneous measurement of gamma dose and neutron flux during BNCT irradiations.


Assuntos
Terapia por Captura de Nêutron de Boro , Gadolínio , Nêutrons , Óxidos
7.
Phys Med ; 89: 282-292, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474326

RESUMO

PURPOSE: Boron Neutron Capture Therapy (BNCT) is a form of hadrontherapy based on the selective damage caused by the products of neutron capture in 10B to tumour cells. BNCT dosimetry strongly depends on the parameters of the dose calculation models derived from radiobiological experiments. This works aims at determining an adequate dosimetry for in-vitro experiments involving irradiation of monolayer-cultured cells with photons and BNCT and assessing its impact on clinical settings. M&M: Dose calculations for rat osteosarcoma UMR-106 and human metastatic melanoma Mel-J cell survival experiments were performed using MCNP, transporting uncharged particles for KERMA determinations, and secondary particles (electrons, protons, 14C, 4He and 7Li) to compute absorbed dose in cultures. Dose-survival curves were modified according to the dose correction factors determined from computational studies. New radiobiological parameters of the photon isoeffective dose models for osteosarcoma and metastatic melanoma tumours were obtained. Dosimetry implications considering cutaneous melanoma patients treated in Argentina with BNCT were assessed and discussed. RESULTS: KERMA values for the monolayer-cultured cells overestimate absorbed doses of radiation components of interest in BNCT. Detailed dose calculations for the osteosarcoma irradiation increased the relative biological effectiveness factor RBE1% of the neutron component in more than 30%. The analysis based on melanoma cases reveals that the use of survival curves based on KERMA leads to an underestimation of the tumour doses delivered to patients. CONCLUSIONS: Considering detailed dose calculation for in-vitro experiments significantly impact on the prediction of the tumor control in patients. Therefore, proposed methods are clinically relevant.


Assuntos
Terapia por Captura de Nêutron de Boro , Melanoma , Neoplasias Cutâneas , Animais , Humanos , Masculino , Melanoma/radioterapia , Radiometria , Ratos , Eficiência Biológica Relativa
8.
Biology (Basel) ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036386

RESUMO

Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to optimize the therapeutic efficacy of BNCT, contribute towards exploring the role of BNCT in veterinary medicine, put in place technical aspects for an upcoming clinical trial of BNCT for head and neck cancer at the RA-6 Nuclear Reactor, and assess the feasibility of employing the existing B2 beam to treat large, deep-seated tumors. Five dogs with head and neck cancer with no other therapeutic option were treated with two applications of BNCT mediated by boronophenyl-alanine (BPA) separated by 3-5 weeks. Two to three portals per BNCT application were used to achieve a potentially therapeutic dose over the tumor without exceeding normal tissue tolerance. Clinical and Computed Tomography results evidenced partial tumor control in all cases, with slight-moderate mucositis, excellent life quality, and prolongation in the survival time estimated at recruitment. These exploratory studies show the potential value of BNCT in veterinary medicine and contribute towards initiating a clinical BNCT trial for head and neck cancer at the RA-6 clinical facility.

9.
Chemistry ; 26(63): 14335-14340, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738078

RESUMO

About 95 % of people diagnosed with glioblastoma die within five years. Glioblastoma is the most aggressive central nervous system tumour. It is necessary to make progress in the glioblastoma treatment so that advanced chemotherapy drugs or radiation therapy or, ideally, two-in-one hybrid systems should be implemented. Tyrosine kinase receptors-inhibitors and boron neutron capture therapy (BNCT), together, could provide a therapeutic strategy. In this work, sunitinib decorated-carborane hybrids were prepared and biologically evaluated identifying excellent antitumoral- and BNCT-agents. One of the selected hybrids was studied against glioma-cells and found to be 4 times more cytotoxic than sunitinib and 1.7 times more effective than 10 B-boronophenylalanine fructose complex when the cells were irradiated with neutrons.


Assuntos
Antineoplásicos , Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma , Preparações Farmacêuticas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos de Boro , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Camundongos , Fenilalanina
10.
Oral Dis ; 26(6): 1175-1184, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32297432

RESUMO

OBJECTIVE(S): The hamster carcinogenesis model recapitulates oral oncogenesis. Dimethylbenz[a]anthracene (DMBA) cancerization induces early severe mucositis, affecting animal's welfare and causing tissue loss and pouch shortening. "Short" pouches cannot be everted for local irradiation for boron neutron capture therapy (BNCT). Our aim was to optimize the DMBA classical cancerization protocol to avoid severe mucositis, without affecting tumor development. We evaluated BNCT in animals cancerized with this novel protocol. MATERIALS AND METHODS: We studied: Classical cancerization protocol (24 applications) and Classical with two interruptions (completed at the end of the cancerization protocol). BNCT mediated by boronophenylalanine (BPA) was performed in both groups. RESULTS: The twice-interrupted group exhibited a significantly lower percentage of animals with severe mucositis versus the non-interrupted group (17% versus 71%) and a significantly higher incidence of long pouches (100% versus 53%). Tumor development and the histologic characteristics of tumor and precancerous tissue were not affected by the interruptions. For both groups, overall tumor response was more than 80%, with a similar incidence of BNCT-induced severe mucositis. CONCLUSION(S): The twice-interrupted protocol reduced severe mucositis during cancerization without affecting tumor development. This favored the animal's welfare and reduced the number of animals to be cancerized for our studies, without affecting BNCT response.

11.
Microsc Microanal ; 25(6): 1331-1340, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648656

RESUMO

Our group has reported the imprint formation of biological material on polycarbonate nuclear track detectors by UV-C exposure, which is used as an approach to simultaneously visualize cell imprints and nuclear tracks coming from the boron neutron capture reaction. Considering that the cell nucleus has a higher UV-C absorption than the cytoplasm and that hematoxylin preferentially stains the nucleus, we proposed to enhance the contrast between these two main cell structures by hematoxylin staining before UV-C sensitization. In this study, several experiments were performed in order to optimize UV-C exposure parameters and chemical etching conditions for cell imprint formation using the SK-BR-3 breast cancer cell line. The proposed method improves significantly the resolution of the cell imprints. It allows clear differentiation of the nucleus from the rest of the cell, together with nuclear tracks pits. Moreover, it reduces considerably the UV-C exposure time, an important experimental issue. The proposed methodology can be applied to study the boron distribution independently from the chosen cell line and/or boron compounds.


Assuntos
Autorradiografia/métodos , Análise de Ativação de Nêutrons/métodos , Coloração e Rotulagem/métodos , Raios Ultravioleta , Boro/efeitos da radiação , Linhagem Celular Tumoral , Hematoxilina/metabolismo , Humanos , Oligoelementos/efeitos da radiação
12.
Ther Deliv ; 10(6): 353-362, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31184544

RESUMO

Boron neutron capture therapy (BNCT) is a targeted therapy, which consists of preferential accumulation of boron carriers in tumor followed by neutron irradiation. Each oral cancer patient has different risks of developing one or more carcinomas and/or oral mucositis induced after treatment. Our group proposed the hamster oral cancer model to study the efficacy of BNCT and associated mucositis. Translational studies are essential to the advancement of novel boron delivery agents and targeted strategies. Herein, we review our work in the hamster model in which we studied BNCT induced mucositis using three different cancerization protocols, mimicking three different clinical scenarios. The BNCT-induced mucositis increases with the aggressiveness of the carcinogenesis protocol employed, suggesting that the study of different oral cancer patient scenarios would help to develop personalized therapies.


Assuntos
Terapia por Captura de Nêutron de Boro/efeitos adversos , Neoplasias Bucais/radioterapia , Mucosite/diagnóstico , Neoplasias Experimentais/radioterapia , Lesões por Radiação/diagnóstico , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Terapia por Captura de Nêutron de Boro/métodos , Carcinógenos/toxicidade , Cricetinae , Relação Dose-Resposta à Radiação , Humanos , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/complicações , Mucosite/etiologia , Mucosite/prevenção & controle , Neoplasias Experimentais/induzido quimicamente , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Índice de Gravidade de Doença
13.
Radiat Environ Biophys ; 58(3): 455-467, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123853

RESUMO

Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.


Assuntos
Compostos de Boro/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Boro/metabolismo , Isótopos/metabolismo , Animais , Bochecha , Cricetinae , Modelos Animais de Doenças , Mesocricetus , Neoplasias Bucais , Distribuição Tecidual
14.
Radiat Environ Biophys ; 58(2): 237-245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30689023

RESUMO

Osteosarcoma is the most common primary malignant tumour of bone in young patients. The survival of these patients has largely been improved due to adjuvant and neo-adjuvant chemotherapy in addition to surgery. Boron neutron capture therapy (BNCT) is proposed as a complementary therapy, due to its ability to inactivate tumour cells that may survive the standard treatment and that may be responsible for recurrences and/or metastases. BNCT is based on neutron irradiation of a tumour enriched in 10B with a boron-loaded drug. Low-energy neutron capture in 10B creates charged particles that impart a high dose to tumour cells, which can be calculated only knowing the boron concentration. Charged particle spectrometry is a method that can be used to quantify boron concentration. This method requires acquisition of the energy spectra of charged particles such as alpha particles produced by neutron capture reactions in thin tissue sections irradiated with low-energy neutrons. Boron concentration is then determined knowing the stopping power of the alpha particles in the sample material. This paper describes the adaptation of this method for bone, with emphasis on sample preparation, experimental set-up and stopping power assessment of the involved alpha particles. The knowledge of boron concentration in healthy bones is important, because it allows for any dose limitation that might be necessary to avoid adverse effects such as bone fragility. The measurement process was studied through Monte Carlo simulations and analytical calculations. Finally, the boron content of bone samples was measured by alpha spectrometry at the TRIGA reactor in Pavia, Italy, and compared to that obtained by neutron autoradiography. The agreement between the results obtained with these techniques confirms the suitability of alpha spectrometry to measure boron in bone.


Assuntos
Boro/análise , Fêmur/química , Adulto , Partículas alfa , Animais , Humanos , Método de Monte Carlo , Ovinos
15.
Int J Radiat Biol ; 95(5): 646-654, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30601686

RESUMO

PURPOSE: Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. BNCT has been proposed for the treatment of multiple, non-resectable, diffuse tumors in lung. The aim of the present study was to evaluate the therapeutic efficacy and toxicity of BNCT in an experimental model of lung metastases of colon carcinoma in BDIX rats and perform complementary survival studies. MATERIALS AND METHODS: We evaluated tumor control and toxicity in lung 2 weeks post-BNCT at 2 dose levels, including 5 experimental groups per dose level: T0 (euthanized pre-treatment), Boronophenylalanine-BNCT (BPA-BNCT), BPA + Sodium decahydrodecaborate-BNCT ((BPA + GB-10)-BNCT), Beam only (BO) and Sham (no treatment, same manipulation). Tumor response was assessed employing macroscopic and microscopic end-points. An additional experiment was performed to evaluate survival and oxygen saturation in blood. RESULTS AND CONCLUSIONS: No dose-limiting signs of short/medium-term toxicity were observed in lung. All end-points revealed statistically significant BNCT-induced tumor control vs Sham at both dose levels. The survival experiment showed a statistically significant 45% increase in post-treatment survival time in the BNCT group (48 days) versus Sham (33 days). These data consistently revealed growth suppression of lung metastases by BNCT with no manifest lung toxicity. Highlights Boron Neutron Capture Therapy suppresses growth of experimental lung metastases No BNCT-induced short/medium-term toxicity in lung is associated with tumor control Boron Neutron Capture Therapy increased post-treatment survival time by 45.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Pulmonares/radioterapia , Pesquisa Translacional Biomédica , Animais , Terapia por Captura de Nêutron de Boro/efeitos adversos , Linhagem Celular Tumoral , Neoplasias do Colo/secundário , Relação Dose-Resposta à Radiação , Neoplasias Pulmonares/patologia , Radiometria , Ratos , Análise de Sobrevida
16.
Radiat Environ Biophys ; 56(4): 377-387, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28871389

RESUMO

Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.


Assuntos
Terapia por Captura de Nêutron de Boro/efeitos adversos , Terapia por Captura de Nêutron de Boro/instrumentação , Bochecha , Neoplasias Bucais/etiologia , Neoplasias Induzidas por Radiação/etiologia , Reatores Nucleares , Pesquisa Translacional Biomédica , Animais , Cricetinae , Modelos Animais de Doenças , Histamina/farmacologia , Neoplasias Bucais/prevenção & controle , Neoplasias Induzidas por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia
17.
Radiat Environ Biophys ; 56(4): 365-375, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28791476

RESUMO

The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 106 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm3. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm3. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias do Colo/radioterapia , Animais , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Imunoterapia , Masculino , Metástase Neoplásica , Ratos
18.
Nanomaterials (Basel) ; 7(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417903

RESUMO

Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

19.
Oral Dis ; 21(6): 770-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25926141

RESUMO

OBJECTIVES: Searching for more effective and selective therapies for head and neck cancer, we demonstrated the therapeutic effect of boron neutron capture therapy (BNCT) to treat oral cancer and inhibit long-term tumor development from field-cancerized tissue in the hamster cheek pouch model. However, BNCT-induced mucositis in field-cancerized tissue was dose limiting. In a clinical scenario, oral mucositis affects patients' treatment and quality of life. Our aim was to evaluate different radioprotectors, seeking to reduce the incidence of BNCT-induced severe mucositis in field-cancerized tissue. MATERIALS AND METHODS: Cancerized pouches treated with BNCT mediated by boronophenylalanine at 5 Gy were treated as follows: control: saline solution; Hishigh : histamine 5 mg kg(-1) ; Hislow : histamine 1 mg kg(-1) ; and JNJ7777120: 10 mg kg(-1). RESULTS: Hislow reduced the incidence of severe mucositis in field-cancerized tissue to 17% vs CONTROL: 55%; Hishigh : 67%; JNJ7777120: 57%. Hislow was non-toxic and did not compromise the long-term therapeutic effect of BNCT or alter gross boron concentration. CONCLUSION: Histamine reduces BNCT-induced mucositis in experimental oral precancer without jeopardizing therapeutic efficacy. The fact that both histamine and boronophenylalanine are approved for use in humans bridges the gap between experimental work and potential clinical application to reduce BNCT-induced radiotoxicity in patients with head and neck cancer.


Assuntos
Terapia por Captura de Nêutron de Boro/efeitos adversos , Histamina/uso terapêutico , Neoplasias Bucais/radioterapia , Lesões Pré-Cancerosas/radioterapia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/uso terapêutico , Estomatite/prevenção & controle , Animais , Cricetinae , Modelos Animais de Doenças , Indóis/uso terapêutico , Piperazinas/uso terapêutico , Lesões Experimentais por Radiação/etiologia , Estomatite/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA