Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Bioelectrochemistry ; 157: 108632, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38181592

RESUMO

Electrochemical biosensors are known for their high sensitivity, selectivity, and low cost. Recently, they have gained significant attention and became particularly important as promising tools for the detection of COVID-19 biomarkers, since they offer a rapid and accurate means of diagnosis. Biorecognition strategies are a crucial component of electrochemical biosensors and determine their specificity and sensitivity based on the interaction of biological molecules, such as antibodies, enzymes, and DNA, with target analytes (e.g., viral particles, proteins and genetic material) to create a measurable signal. Different biorecognition strategies have been developed to enhance the performance of electrochemical biosensors, including direct, competitive, and sandwich binding, alongside nucleic acid hybridization mechanisms and gene editing systems. In this review article, we present the different strategies used in electrochemical biosensors to target SARS-CoV-2 and other COVID-19 biomarkers, as well as explore the advantages and disadvantages of each strategy and highlight recent progress in this field. Additionally, we discuss the challenges associated with developing electrochemical biosensors for clinical COVID-19 diagnosis and their widespread commercialization.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Biomarcadores , Técnicas Eletroquímicas
2.
Biosensors (Basel) ; 13(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979548

RESUMO

Rapid transmission and high mortality rates caused by the SARS-CoV-2 virus showed that the best way to fight against the pandemic was through rapid, accurate diagnosis in parallel with vaccination. In this context, several research groups around the world have endeavored to develop new diagnostic methods due to the disadvantages of the gold standard method, reverse transcriptase polymerase chain reaction (RT-PCR), in terms of cost and time consumption. Electrochemical and bioelectrochemical platforms have been important tools for overcoming the limitations of conventional diagnostic platforms, including accuracy, accessibility, portability, and response time. In this review, we report on several electrochemical sensors and biosensors developed for SARS-CoV-2 detection, presenting the concepts, fabrication, advantages, and disadvantages of the different approaches. The focus is devoted to highlighting the recent progress of electrochemical devices developed as next-generation field-deployable analytical tools as well as guiding future researchers in the manufacture of devices for disease diagnosis.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Pandemias , Técnicas Biossensoriais/métodos
3.
Biosensors (Basel) ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36551045

RESUMO

The synergistic potentialities of innovative materials that include aptamers have opened new paradigms in biosensing platforms for high-throughput monitoring systems. The available nucleobase functional moieties in aptamers offer exclusive features for bioanalytical sensing applications. In this context, compared to various in-practice biological recognition elements, the utilization of aptamers in detection platforms results in an extensive range of advantages in terms of design flexibility, stability, and sensitivity, among other attributes. Thus, the utilization of aptamers-based biosensing platforms is extensively anticipated to meet unaddressed challenges of various in-practice and standard analytical and sensing techniques. Furthermore, the superior characteristics of aptasensors have led to their applicability in the detection of harmful pollutants present in ever-increasing concentrations in different environmental matrices and water bodies, seeking to achieve simple and real-time monitoring. Considering the above-mentioned critiques and notable functional attributes of aptamers, herein, we reviewed aptamers as a fascinating interface to design, develop, and deploy a new generation of monitoring systems to aid modern bioanalytical sensing applications. Moreover, this review aims to summarize the most recent advances in the development and application of aptasensors for the detection of various emerging pollutants (EPs), e.g., pharmaceutical, and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), pesticides and other agricultural-related compounds, and toxic heavy elements. In addition, the limitations and current challenges are also reviewed, considering the technical constraints and complexity of the environmental samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Poluentes Ambientais , Praguicidas , Aptâmeros de Nucleotídeos/química , Poluentes Ambientais/análise , Técnicas Biossensoriais/métodos
4.
Braz. j. microbiol ; Braz. j. microbiol;40(1): 86-89, Jan.-Mar. 2009. graf, tab
Artigo em Inglês | LILACS | ID: lil-513121

RESUMO

Flow cytometry was used to quantify the abundance of mannose-linked glycoconjugates on microalgae precultured using low- or high-nitrate media. Nitrogen-deficient microalgae were richer in cell-surface mannose than nitrogen-sufficient. Findings are discussed in view of recent research which reveals mannose-specific 'feeding receptors' assist prey biorecognition by phagotrophic protozoa that ingest microalgae.


Citometria de fluxo foi usada para quantificar a abundância de glicoconjugados com manose em precultivos de microalgas usando meios com baixo e alto teor de nitrato. Microalgas com deficiências de nitrogênio tinham mais manose na superfície celular do que as com nitrogênio suficiente. Resultados são discutidos com base nas pesquisas recentes que revelam receptores específicos para manose que auxiliam no reconhecimento da presa por protozoários fagotróficos que ingerem microalgas.


Assuntos
Bacteriófagos/isolamento & purificação , Eucariotos , Citometria de Fluxo , Glicoconjugados/análise , Manose , Nitrogênio/análise , Biomassa , Métodos , Potência , Métodos
5.
Braz J Microbiol ; 40(1): 86-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031323

RESUMO

Flow cytometry was used to quantify the abundance of mannose-linked glycoconjugates on microalgae precultured using low- or high-nitrate media. Nitrogen-deficient microalgae were richer in cell-surface mannose than nitrogen-sufficient. Findings are discussed in view of recent research which reveals mannose-specific 'feeding receptors' assist prey biorecognition by phagotrophic protozoa that ingest microalgae.

6.
Artigo em Inglês | VETINDEX | ID: vti-444344

RESUMO

Flow cytometry was used to quantify the abundance of mannose-linked glycoconjugates on microalgae precultured using low- or high-nitrate media. Nitrogen-deficient microalgae were richer in cell-surface mannose than nitrogen-sufficient. Findings are discussed in view of recent research which reveals mannose-specific 'feeding receptors' assist prey biorecognition by phagotrophic protozoa that ingest microalgae.


Citometria de fluxo foi usada para quantificar a abundância de glicoconjugados com manose em precultivos de microalgas usando meios com baixo e alto teor de nitrato. Microalgas com deficiências de nitrogênio tinham mais manose na superfície celular do que as com nitrogênio suficiente. Resultados são discutidos com base nas pesquisas recentes que revelam receptores específicos para manose que auxiliam no reconhecimento da presa por protozoários fagotróficos que ingerem microalgas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA