Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
CienciaUAT ; 18(2): 136-144, ene.-jun. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1569026

RESUMO

Resumen: El maíz contiene un gran número de compuestos antioxidantes, muchos de ellos unidos a componentes de la pared celular, por lo que requieren tratamientos para liberarlos, como el uso de enzimas o procesos de fermentación. La fermentación en medio sólido (FMS) con Rhizopus oryzae se ha aplicado para aumentar la capacidad antioxidante (CA) y el contenido fenólico en cereales y leguminosas. El objetivo del presente trabajo fue evaluar el efecto de la FMS con R. oryzae sobre la CA y el contenido de fenoles totales (CFT) del maíz. La FMS se realizó en bolsas zip-lock (25 cm2) a 30 °C/72 h, con un inóculo de 1 x 106 esporas/g. Se tomaron muestras cada 12 h, el extracto se recuperó con etanol al 80 % y se utilizó para determinar el CFT y la CA (ensayo ABTS+, DPPH y FRAP). Los valores más altos se obtuvieron a las 60 h de cultivo, con un CFT de 1.92 mg/ gramos de materia seca (gms) y una CA de 1.47 mg de equivalentes Trolox por gramo de materia seca (mg ET/gms), 1.27 mg ET/gms y 5.8 mg Fe+2/gms para los ensayos de ABTS+, DPPH y FRAP, respectivamente. El uso de FMS permitió aumentar hasta 0.83 y 1.25 veces el CFT y la CA del maíz, con respecto al tiempo 0 h. El maíz fermentado con R. oryzae mostró potencial para ser empleado como materia prima para el desarrollo de alimentos funciona les, al incrementar su CA a través de un bioproceso.


Abstract: Maize contains a large number of antioxidant compounds. However, many of them are not in free form, as they are bound to components of the cell wall of maize kernels. For this reason, the use of treatments is required to release them, such as the use of enzymes or fermentation processes. Fermentation in solid medium (FMS) with Rhizopus oryzae has been applied to increase the antioxidant capacity (AC) and phenolic content in cereals and legumes. The objective of the present work was to evaluate the effect of FMS with R. oryzae on AC and total phenolic content (TPC) of maize. Fermentation on solid medium was carried out in zip-lock bags (25 cm2) at 30 °C for 72 h, with an inoculum of 1 x 106 spores/g. Samples were taken every 12 h, the extract was recovered with 80% ethanol, and used to determine TPC and AC (ABTS+, DPPH and FRAP essay). The highest values were obtained at 60 h of culture, with a TPC of 1.92 mg/gram dry metter (gdm) and an AC of 1.47 mg TE/gmd, 1.27 mg TE/gdm and 5.8 mg Fe+2/gdm for the ABTS+, DPPH and FRAP assays, respectively. The use of FMS allowed to increase up to 0.83 and 1.25 times the CFT and CA of corn, with respect to time zero. Corn fermented with R. oryzae showed potential to be used as a raw material for the development of functional foods, by increase its AC through a bioprocess.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124638, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38880076

RESUMO

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.


Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Análise dos Mínimos Quadrados , Glucose/análise , Redes Neurais de Computação , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/análise , Máquina de Vetores de Suporte , Análise de Componente Principal , Glutamina/análise , Ácido Láctico/análise , Compostos de Amônio/análise
3.
Biotechnol J ; 19(6): e2400260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900054

RESUMO

Follicle-stimulating hormone (FSH) is an important protein used for bovine ovarian hyperstimulation in multiple ovulation and embryo transfer technology (MOET). Several attempts to produce bovine FSH (bFSH) in recombinant systems have been reported, nonetheless, up to date, the most commonly used products are partially purified preparations derived from porcine or ovine (pFSH or oFSH) pituitaries. Here we describe the development of a biotechnology process to produce a novel, hyperglycosylated, long-acting recombinant bFSH (LA-rbFSH) by fusing copies of a highly O-glycosylated peptide. LA-rbFSH and a nonmodified version (rbFSH) were produced in suspension CHO cell cultures and purified by IMAC with high purity levels (>99%). LA-rbFSH presented a higher glycosylation degree and sialic acid content than rbFSH. It also demonstrated a notable improvement in pharmacokinetic properties after administration to rats, including a higher concentration in plasma and a significant (seven-fold) reduction in apparent clearance (CLapp). In addition, the in vivo specific bioactivity of LA-rbFSH in rats was 2.4-fold higher compared to rbFSH. These results postulate this new molecule as an attractive substitute for commercially available porcine pituitary-derived products.


Assuntos
Cricetulus , Hormônio Foliculoestimulante , Proteínas Recombinantes , Animais , Hormônio Foliculoestimulante/metabolismo , Células CHO , Glicosilação , Bovinos , Ratos , Feminino , Biotecnologia/métodos
4.
Bioprocess Biosyst Eng ; 47(9): 1555-1570, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38916653

RESUMO

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate. The spherical quadratic central composite design (CCD) model was used to standardize carbon source concentration (30 g/L), temperature (34 °C), pH (7.2), stirring (239 rpm), and aeration (0.775 vvm) in a 5-L bioreactor. Maximum BSFs production reached 1527.6 mg/L of surfactins and 176.88 mg/L of iturins, a threefold increase through optimization. Microbial development, substrate consumption, concentration of BSFs, and surface tension were also evaluated on the bioprocess dynamics. Mass spectrometry Q-TOF-MS identified five surfactin and two iturin isoforms produced by B. velezensis MO13. This study demonstrates significant progress on BSF production using industrial waste as a microbial substrate, surpassing reported concentrations in the literature.


Assuntos
Bacillus , Glicerol , Lipopeptídeos , Tensoativos , Bacillus/metabolismo , Tensoativos/metabolismo , Tensoativos/química , Lipopeptídeos/biossíntese , Lipopeptídeos/química , Glicerol/metabolismo , Reatores Biológicos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38592628

RESUMO

Biosurfactants have been profiled as a sustainable replacement for chemical-based surfactants since these bio-based molecules have higher biodegradability. Few research papers have focused on assessing biosurfactant production to elucidate potential bottlenecks. This research aims to assess the techno-economic and environmental performance of surfactin production in a potential scale of 65m3, considering different product yields and involving the European energy crisis of 2021-2022. The conceptual design, simulation, techno-economic, and environmental assessments were done by applying process engineering concepts and software tools such as Aspen Plus v.9.0 and SimaPro v.8.3.3. The results demonstrated the high economic potential of surfactin production since the higher values in the market offset the low fermentation yields, low recovery efficiency, and high capital investment. The sensitivity analysis of the economic assessment elucidated a minimum surfactin selling price between 29 and 31 USD/kg of surfactin, while a minimum processing scale for economic feasibility between 4 and 5 kg/h is needed to reach an equilibrium point. The environmental performance must be improved since the carbon footprint was 43 kg CO2eq/kg of surfactin. The downstream processing and energy demand are the main bottlenecks since these aspects contribute to 63 and 25% of the total emissions. The fermentation process and downstream process are key factors for future optimization and research.

6.
J Food Sci Technol ; 61(5): 833-846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38487286

RESUMO

Vegetable substrates are food matrices with micronutrients, antioxidants, and fiber content with a high potential for bioprocesses development. In addition, they have been recognized as essential sources of a wide range of phytochemicals that, individually or in combination, can act as bioactive compounds with potential benefits to health due to their antioxidant and antimicrobial activity and recently due to their status as prebiotics in the balance of the human intestinal microbiota. This systematic review explores the benefits of lactic fermentation of plant matrices such as fruits, vegetables, legumes, and cereals by bacteria with probiotic potential, guaranteeing cell viability (106-107 CFU/mL) and generating bioactive metabolic products for modulation of the gut microbiome.

8.
Biotechnol Prog ; 40(3): e3419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38247123

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have shown increasing therapeutic potential in the last years. However, large production of EV is required for therapeutic purposes. Thereby, scaling up MSC cultivation in bioreactors is essential to allow culture parameters monitoring. In this study, we reported the establishment of a scalable bioprocess to produce MSC-EV in suspension cultures using spinner flasks and human collagen-coated microcarriers (3D culture system). We compared the EV production in this 3D culture system with the standard static culture using T-flasks (2D culture system). The EV produced in both systems were characterized and quantify by western blotting and nanoparticle tracking analysis. The presence of the typical protein markers CD9, CD63, and CD81 was confirmed by western blotting analyses for EV produced in both culture systems. The cell fold-increase was 5.7-fold for the 3D culture system and 4.6-fold for the 2D culture system, signifying a fold-change of 1.2 (calculated as the ratio of fold-increase 3D to fold-increase 2D). Furthermore, it should be noted that the total cell production in the spinner flask cultures was 4.8 times higher than that in T-flask cultures. The total cell production in the spinner flask cultures was 5.2-fold higher than that in T-flask cultures. While the EV specific production (particles/cell) in T-flask cultures (4.40 ± 1.21 × 108 particles/mL, p < 0.05) was higher compared to spinner flask cultures (2.10 ± 0.04 × 108 particles/mL, p < 0.05), the spinner flask culture system offers scalability, making it capable of producing enough MSC-EV at a large scale for clinical applications. Therefore, we concluded that 3D culture system evaluated here serves as an efficient transitional platform that enables the scaling up of MSC-EV production for therapeutic purposes by utilizing stirred tank bioreactors and maintaining xeno-free conditions.


Assuntos
Técnicas de Cultura de Células , Vesículas Extracelulares , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Humanos , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Células Cultivadas
9.
World J Microbiol Biotechnol ; 40(2): 70, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225443

RESUMO

Lactic acid bacteria (LAB) coexist with Clostridium spp. in hydrogen production processes from complex substrates; however, the role of LAB is still unclear. This study analyzed the fermentation products in a wide range of initial pH (pHi, 5.5-6.9) and total solids (TS%, 8-22%) to determine the activity of these two microbial groups over time (from 24 to 120 h). Agave bagasse served as the feedstock for hydrogen production via consolidated bioprocess (CBP), while the inoculum source was the indigenous mature microbiota. In the early stage of the CBP, hydrogen production from lactic acid occurred only at pHi ≥ 6.0 (ρ = 0.0004) with no effect of TS%; lactic acid accumulated below this pHi value. In this stage, lactic acid production positively correlated with a first cluster of LAB represented by Paucilactobacillus (r = 0.64) and Bacillus (r = 0.81). After 72 h, hydrogen production positively correlated with a second group of LAB led by Enterococcus (r = 0.71) together with the hydrogen producer Clostridium sensu stricto 1 (r = 0.8) and the acetogen Syntrophococcus (r = 0.52) with the influence of TS% (ρ < 0.0001). A further experiment showed that buffering the pH to 6.5 increased and lengthened the lactic acid production, doubling the hydrogen production from 20 to 41 mL H2/gTSadded. This study confirmed the prevalence of distinct groups of LAB over time, whose microbial activity promoted different routes of hydrogen production.


Assuntos
Agave , Celulose , Lactobacillales , Hidrogênio , Fermentação , Ácido Láctico , Concentração de Íons de Hidrogênio
10.
Metabolites ; 14(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248838

RESUMO

Germination is a simple and cost-effective technology that enhances the technological, sensory, and nutritional potential of grains, making them more attractive for use in the food industry. Germinating indigenous seeds is an alternative to increase noticeability and add value to these grains, which hold social and economic significance in the regions where they are cultivated, such as creole purple pericarp corn (PPCC) from the Couto Magalhães de Minas region in Brazil. This study aimed to optimize the germination parameters of time (24-96 h) and temperature (18-32 °C) for PPCC to produce water-soluble extracts and bread. Endogenous enzymes resulting from the germination process significantly enhanced (p < 0.10) the technological (total reducing sugars, total soluble solids, and soluble proteins) and biological properties (γ-aminobutyric acid, total soluble phenolic compounds, and antioxidant capacity) of the water-soluble extracts. The optimum point for obtaining the extracts was found to be at 85.3 h at 30.46 °C (with desirability of 90.42%), and this was statistically validated. The incorporation of germinated PPCC flours into bread was also promising (p < 0.10) and had a positive impact on the dough property (dough volume increase) and the final product, especially in terms of instrumental texture (springiness, cohesiveness, gumminess, chewiness, and resilience), resulting in a softer texture (lower firmness and hardness). The addition of PPCC flours did not alter instrumental color parameters, which may lead to greater consumer acceptance due to imperceptible differences in color to untrained individuals, with the optimized point at 96 h at 29.34 °C, with a desirability of 92.60%. Therefore, germinated PPCC shows promise for use as a base for obtaining water-soluble extracts and in bread as a replacement for commercial flour improvers, while also adding value to a raw material that is part of the local culture and agrobiodiversity.

11.
Biotechnol Bioeng ; 121(1): 238-249, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902687

RESUMO

Oleaginous yeasts are promising platforms for microbial lipids production as a renewable and sustainable alternative to vegetable oils in biodiesel production. In this paper, a thorough in silico assessment of lipid production in batch cultivation by Rhodosporidium toruloides was developed. By means of dynamic flux balance analysis, the traditional two-stage bioprocess (TSB) performed by the native strain was contrasted with one-stage bioprocess (OSB) using four designed strains obtained by gene knockout strategies. Lipid titer, yield, content, and productivity were analyzed at different initial C/N ratios as relevant performance indicators used in bioprocesses. By weighting these indicators, a global lipid efficiency metric (GLEM) was defined to consider different scenarios. Under simulated conditions, designed strains for lipid overproduction in OSB outperformed the TSB in terms of lipid title (up to threefold), lipid yield (up to 2.4-fold), lipid content (up to 2.8-fold, with a maximum of 76%), and productivity (up to 1.3-fold), depending on C/N ratios. Using these efficiency parameters and the proposed GLEM, the process of selecting the most suitable candidates for lipid production could be carried out before experimental assays. This methodology holds the potential to be extended to other oleaginous microorganisms and diverse strain design techniques.


Assuntos
Basidiomycota , Rhodotorula , Basidiomycota/genética , Rhodotorula/genética , Biocombustíveis , Lipídeos
12.
J Basic Microbiol ; 64(2): e2300444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051942

RESUMO

The aim of this study was to investigate the production, stability and applicability of colorants produced by filamentous fungi isolated from soil samples from the Amazon. Initially, the isolates were evaluated in a screening for the production of colorants. The influences of cultivation and nutritional conditions on the production of colorants by fungal isolates were investigated. The colorants produced by selected fungal isolates were chemically characterized using the Liquid Chromatography-Mass Spectrometry technique. The antimicrobial and cytotoxic activities, stability evaluation and applicability of the colorants were investigated. As results, we observed that the isolates Penicillium sclerotiorum P3SO224, Clonostachys rosea P2SO329 and Penicillium gravinicasei P3SO332 stood out since they produced the most intense colorants. Compounds produced by Penicillium sclerotiorum P3SO224 and Clonostachys rosea P2SO329 were identified as sclerotiorin and penicillic acid. The colorant fraction (EtOAc) produced by these species has antimicrobial activity, stability at temperature and at different pHs, stability when exposure to light and UV, and when exposed to different concentrations of salts, as well as being nontoxic and having the ability to dye fabrics and be used as a pigment in creams and soap. Considering the results found in this study, it was concluded that fungi from the soil in the Amazon have the potential to produce colorants with applications in the textile and pharmaceutical industries.


Assuntos
Anti-Infecciosos , Hypocreales , Penicillium , Pigmentos Biológicos/química , Fungos/química , Solo
13.
Biochem. Eng. J., v. 211, 109441, jul. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5444

RESUMO

This work assessed the impact of laser wavelength and sample conditioning on offline monitoring (viable cell density, cell viability, virus titer, glucose, lactate, glutamine, glutamate, and ammonium) of SARS-CoV-2 viruslike particles production upstream stage by Raman spectroscopy. The evaluated chemometrics techniques were Partial Least Squares (PLS) and Artificial Neural Networks (ANN), and different spectral filtering approaches were also considered. ANN showed better prediction capacity for most of the parameters, but ammonium and lactate, better predicted by PLS, and glutamine, no difference between modeling techniques was detected. For cell growth parameters and virus titer, samples without cells measured at 785 nm Raman laser wavelength originated better-adjusted models. This laser wavelength was also more appropriate for the remaining monitored experimental parameters except for glucose, in which the best model came from the spectral database acquired at 1064 nm wavelength. Cell remotion significantly increased the accuracy of viable cell density, cell viability, glutamate, and virus titer models. However, glucose, lactate, and ammonium models showed better prediction capacity for samples containing cells. Thus, it was demonstrated that laser wavelength, sample conditioning, spectral preprocessing, and chemometric modeling techniques need to be tailored for each experimental parameter to improve accuracy.

14.
Spectroc Acta Pt. A- Molec Biomolec Spectr, v. 320, n. 2024, 124638, nov. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5411

RESUMO

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particlemaking process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01–8.83 × 106 cells/mL), cell viability (1.3–100.0 %), glucose (5.22–10.93 g/L), lactate (18.6–152.7 mg/L), glutamine (158–1761 mg/L), glutamate (807.6–2159.7 mg/L), and ammonium (62.8–117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.

15.
Bioresour Technol ; 394: 130208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113947

RESUMO

Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.


Assuntos
Microalgas , Fotobiorreatores , Biomassa , Biocombustíveis , Custos e Análise de Custo
16.
Foods ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37959021

RESUMO

Ryegrass is one such cereal that has been underutilized in human nutrition despite its high nutritional and functional value due to the presence of phytochemicals and dietary fibers. Exploiting ryegrass for human consumption is an exciting option, especially for countries that do not produce wheat, as it is easily adaptable and overgrows, making it economically viable. This study evaluated the nutritional content of γ-aminobutyric acid and bioactive compounds (total soluble phenolic compounds) and the physicochemical and technological properties of partially substituting maize flour (MF) with sprouted whole ryegrass flour (SR) in developing extrusion-cooked breakfast cereals. A completely randomized design with substitutions ranging from 0 to 20% of MF with SR was employed as the experimental strategy (p < 0.05). Partial incorporation of SR increased the content of γ-aminobutyric acid and total soluble phenolic compounds. Using sprouted grains can adversely affect the technological quality of extruded foods, mainly due to the activation of the amylolytic enzymes. Still, ryegrass, with its high dietary fiber and low lipid content, mitigates these negative effects. Consequently, breakfast cereals containing 4 and 8% SR exhibited better physicochemical properties when compared to SR12, SR16, SR20, and USR10, presenting reduced hardness and increased crispness, and were similar to SR0. These results are promising for ryegrass and suggest that combining the age-old sprouting process with extrusion can enhance the nutritional quality and bioactive compound content of cereal-based breakfast products while maintaining some technological parameters, especially crispiness, expansion index, water solubility index, and firmness, which are considered satisfactory.

17.
J Environ Manage ; 347: 119067, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778074

RESUMO

In the pursuit of sustainability, managing agro-industrial and food processing residues (AFR) efficiently is crucial. This study proposes a systematic approach to convert AFR into valuable products via solid-state fermentation (SSF). Using fungal enzyme production as a case study, this adaptable methodology suits any SSF bioprocess. Initially, AFR's physicochemical properties were evaluated to assess their feasible use as carbon sources and solid matrices for SSF. Then, five strains were screened for their capability to produce enzymes (Xylanase, X; pectinase, P; cellulase, C). Apple pomace (AP) and brewery spent grain (BSG) with Aspergillus sp. (strain G5) were selected. Subsequent steps involved a two-phase statistical approach, identifying critical factors and optimizing them. Process conditions were screened using a Plackett-Burman design, narrowing critical variables to three (BSG/AP, pH, humidity). Response Surface Methodology (Central Composite Design) further optimized these factors for co-synthesis of X, P, and C. The humidity had the most significant effect on the three responses. The optimum conditions depended on each enzyme and were further validated to maximize either X, P or C. The obtained extracts were used for pectin extraction from orange peels. The extract containing primarily xylanase (X = 582.39, P = 22.86, C = 26.10 U mL-1) showed major pectin yield recovery (12.33 ± 0.53%) and it was obtained using the optimal settings of BSG/AP (81/19), humidity (50.40%), and pH (4.58). The findings will enable adjusting process conditions to obtain enzymatic cocktails with a tailored composition for specific applications.


Assuntos
Aspergillus , Celulase , Fermentação , Hidrólise , Grão Comestível , Pectinas
18.
Bioprocess Biosyst Eng ; 46(12): 1729-1754, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743409

RESUMO

This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Fungos/metabolismo , Fermentação , Agricultura
19.
World J Microbiol Biotechnol ; 39(9): 251, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442840

RESUMO

Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.


Assuntos
Esqualeno , Estramenópilas , Esqualeno/metabolismo , Óleos de Plantas , Estramenópilas/genética , Estramenópilas/metabolismo , Esteróis
20.
Sci Total Environ ; 886: 163922, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164094

RESUMO

Global growth impacts on the increased use and demand for natural resources, requiring solutions for the high volume of industrial waste and by-products generated from the most diverse commercial areas, mainly the food sector. Among the main residues with a large volume generated, those from fruit processing, grain cleaning in processing units, vegetables, and discards from the animal production industry stood out. Approximately 1.3 billion all food produced worldwide is lost or wasted per year being fruits, vegetables, roots, and tubers responsible for about half of the total amount. Many of these by-products have interesting nutrients in their composition such as fibers, proteins, and bioactive compounds. An interesting example is the sugarcane bagasse. Fibrous residue, derived from sugarcane extraction, the bagasse represents about 30-34 % of the total sugarcane mass. This is one of the most abundant cellulosic residues and contains approximately 39 % of cellulose, 28 % of hemicellulose, and 18 % of lignin. Therefore, as well as the bagasse, several residues from agroindustrial can be considered promising alternative substrates, being valuable sources for the development of high-value-added products, such as biopolymers, bioenergy, and chemical products. In addition, the reuse of agroindustrial wastes may be considered an attractive option for reducing the environmental impact caused by their generation. In the case of biopolymers, the energy savings of bio-based polymers is around 20-50 GJ/t of polymer. In this review, we have selected two commercially promising approaches to the application and use of agroindustrial residues, aiming their use for biodegradable packaging and microbial polysaccharides bio-production, improving overall sustainability and economic aspects of the scientific research, technology and modern industry.


Assuntos
Celulose , Saccharum , Saccharum/metabolismo , Polissacarídeos/metabolismo , Lignina/metabolismo , Biopolímeros , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA