Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 11(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685408

RESUMO

Chagas disease, caused by the kinetoplastid parasite Trypanosoma cruzi, is a human tropical illness mainly present in Latin America. The therapies available against this disease are far from ideal. Proteases from pathogenic protozoan have been considered as good drug target candidates. T. cruzi acidic M17 leucyl-aminopeptidase (TcLAP) mediates the major parasite's leucyl-aminopeptidase activity and is expressed in all parasite stages. Here, we report the inhibition of TcLAP (IC50 = 66.0 ± 13.5 µM) by the bestatin-like peptidomimetic KBE009. This molecule also inhibited the proliferation of T. cruzi epimastigotes in vitro (EC50 = 28.1 ± 1.9 µM) and showed selectivity for the parasite over human dermal fibroblasts (selectivity index: 4.9). Further insight into the specific effect of KBE009 on T. cruzi was provided by docking simulation using the crystal structure of TcLAP and a modeled human orthologous, hLAP3. The TcLAP-KBE009 complex is more stable than its hLAP3 counterpart. KBE009 adopted a better geometrical shape to fit into the active site of TcLAP than that of hLAP3. The drug-likeness and lead-likeness in silico parameters of KBE009 are satisfactory. Altogether, our results provide an initial insight into KBE009 as a promising starting point compound for the rational design of drugs through further optimization.

2.
Int J Biol Macromol ; 164: 2944-2952, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846184

RESUMO

Bestatin and bacitracin are inhibitors of metallo aminopeptidases and bacterial proteases. However, their effects on other human peptidases, like dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) are not established. Inhibitors of DPP-IV activity are used for treating type 2 diabetes mellitus, cancers and immune system diseases. Bacitracin and bestatin inhibited porcine membrane-bound DPP-IV (pDPP-IV) activity. Mechanisms were different, i.e. non-competitive with α > 1 (α = 3.9) and Ki value of 75 µM for bestatin, and competitive with Ki value of 630 µM for bacitracin. The binding mode in the tertiary complex enzyme:substrate:bestatin suggested the structural basis of the inhibitory effect and that bestatin is potentially selective for DPP-IV, ineffective vs. S9 family members dipeptidyl peptidase 8/9 and fibroblast activation protein. In the human melanoma MeWo cell line, bestatin and bacitracin inhibited aminopeptidase N (APN) and DPP-IV activities, reduced cell viability and increased DNA fragmentation, suggesting induction of apoptosis. Since bacitracin and bestatin are already marketed drugs, studying in depth the molecular mechanisms underlying their effects on melanoma cells is warranted. Additionally, bestatin emerges as a new lead compound for the development of DPP-IV inhibitors, and a promising dual APN/DPP-IV inhibitor for the treatment of pathologies in which both enzymes are upregulated.


Assuntos
Antineoplásicos/farmacologia , Bacitracina/farmacologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Leucina/análogos & derivados , Melanoma/enzimologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Dipeptidil Peptidase 4/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Rim/enzimologia , Leucina/farmacologia , Melanoma/tratamento farmacológico , Modelos Moleculares , Relação Estrutura-Atividade , Suínos
3.
SLAS Discov ; 25(9): 1064-1071, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400260

RESUMO

Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin-based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)-based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 µM) and arphamenine A (IC50 = 15.75 µM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.


Assuntos
Doença de Chagas/diagnóstico , Ensaios de Triagem em Larga Escala , Leucil Aminopeptidase/isolamento & purificação , Trypanosoma cruzi/isolamento & purificação , Sequência de Aminoácidos/genética , Animais , Doença de Chagas/enzimologia , Doença de Chagas/parasitologia , Humanos , Cinética , Leucil Aminopeptidase/genética , Espectrometria de Massas , Especificidade por Substrato , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade
4.
Front Microbiol ; 8: 504, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396657

RESUMO

Mycobacterium tuberculosis is one of the most prevalent human pathogens causing millions of deaths in the last years. Moreover, tuberculosis (TB) treatment has become increasingly challenging owing to the emergence of multidrug resistant M. tuberculosis strains. Thus, there is an immediate need for the development of new anti-TB drugs. Proteases appear to be a promising approach and may lead to shortened and effective treatments for drug-resistant TB. Although the M. tuberculosis genome predicts more than 100 genes encoding proteases, only a few of them have been studied. Aminopeptidases constitute a set of proteases that selectively remove amino acids from the N-terminus of proteins and peptides and may act as virulence factors, essential for survival and maintenance of many microbial pathogens. Here, we characterized a leucine aminopeptidase of M. tuberculosis (MtLAP) as a cytosolic oligomeric metallo-aminopeptidase. Molecular and enzymatic properties lead us to classify MtLAP as a typical member of the peptidase family M17. Furthermore, the aminopeptidase inhibitor bestatin strongly inhibited MtLAP activity, in vitro M. tuberculosis growth and macrophage infection. In murine model of TB, bestatin treatment reduced bacterial burden and lesion in the lungs of infected mice. Thus, our data suggest that MtLAP participates in important metabolic pathways of M. tuberculosis necessary for its survival and virulence and consequently may be a promising target for new anti-TB drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA