Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 19(9): e202200630, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35916106

RESUMO

Cyclopeptide alkaloids with different biological activities are present in plants of the family Rhamnaceae. Plants of this family grow in a symbiotic relationship with aerobic Gram-positive actinomycetes belonging to the genus Frankia. This goal of this research was a study of the comparative profile of alkaloids present in Discaria chacaye and to establish a connection between the presence or absence of Frankia sp. and the alkaloids. In addition, insecticidal activities of the alkaloidal extract were examined. A total of 24 alkaloids were identified, of which 12 have a benzylisoquinoline skeleton, 9 were cyclopeptides, 2 isoquinolines, and 1 aporphine. The presence of cyclopeptide alkaloids is associated with Frankia nodules in the plant root. The alkaloid extracts showed insecticidal activity with mortality dose-dependence and LD50 values between 44 to 71 µg/mL.


Assuntos
Actinobacteria , Actinomycetales , Alcaloides , Aporfinas , Benzilisoquinolinas , Frankia , Rhamnaceae , Alcaloides/farmacologia , Isoquinolinas , Peptídeos Cíclicos/farmacologia , Extratos Vegetais , Plantas , Simbiose
2.
Plants (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686035

RESUMO

The synthesis of the benzylisoquinoline alkaloids, sanguinarine and berberine, was monitored in Argemone mexicana L. (Papaveracea) throughout the early stages of its hypocotyl and seedling development. Sanguinarine was detected in the cotyledons right after hypocotyl emergence, and it increased continuously until the apical hook unbent, prior to the cotyledonary leaves unfolding, when it abruptly fell. In the cotyledonary leaves, it also remained at low levels. Throughout development, berberine accumulation required the formation of cotyledonary leaves, whereas it was quickly detected in the hypocotyl from the time it emerged. Interestingly, the alkaloids detected in the cotyledons could have been imported from hypocotyls, because no transcriptional activity was detected in there. However, after turning into cotyledonary leaves, important levels of gene expression were noted. Taken together, these results suggest that the patterns of alkaloid tissue distribution are established from very early development, and might require transport systems.

3.
J Adv Res ; 34: 123-136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35024185

RESUMO

Introduction: Natural products of pharmaceutical interest often do not reach the drug market due to the associated low yields and difficult extraction. Knowledge of biosynthetic pathways is a key element in the development of biotechnological strategies for plant specialized metabolite production. Erythrina species are mainly used as central nervous system depressants in folk medicine and are important sources of bioactive tetracyclic benzylisoquinoline alkaloids (BIAs), which can act on several pathology-related biological targets. Objectives: In this sense, in an unprecedented approach used with a non-model Fabaceae species grown in its unique arid natural habitat, a combined transcriptome and metabolome analyses (seeds and leaves) is presented. Methods: The Next Generation Sequencing-based transcriptome (de novo RNA sequencing) was carried out in a NextSeq 500 platform. Regarding metabolite profiling, the High-resolution Liquid Chromatography was coupled to DAD and a micrOTOF-QII mass spectrometer by using electrospray ionization (ESI) and Time of Flight (TOF) analyzer. The tandem MS/MS data were processed and analyzed through Molecular Networking approach. Results: This detailed macro and micromolecular approach applied to seeds and leaves of E. velutina revealed 42 alkaloids, several of them unique. Based on the combined evidence, 24 gene candidates were put together in a putative pathway leading to the singular alkaloid diversity of this species. Conclusion: Overall, these results could contribute by indicating potential biotechnological targets for modulation of erythrina alkaloids biosynthesis as well as improve molecular databases with omic data from a non-model medicinal plant, and reveal an interesting chemical diversity of Erythrina BIA harvested in Caatinga.


Assuntos
Alcaloides , Erythrina , Perfilação da Expressão Gênica , Folhas de Planta/genética , Sementes/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA