Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Int J Pharm ; 662: 124476, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029635

RESUMO

3D printing technology is revolutionizing pharmaceuticals, offering tailored solutions for solid dosage forms. This innovation is particularly significant for conditions like Chagas disease, which require weight-dependent treatments. In this work, a formulation of benznidazole (BNZ), the primary treatment for this infection, was developed to be utilized with the Melting Solidification Printing Process (MESO-PP) 3D printing technique. Considering the limited aqueous solubility of BNZ, an interpolyelectrolyte complex (IPEC), composed of chitosan and pectin, was integrated to improve its dissolution profile. The formulations, also called inks in this context, with and without IPEC were integrally characterized and compared. The printing process was studied, the release of BNZ from 3D-prints (3DP) was exhaustively analyzed and a physiologically based pharmacokinetic model (PKPB) was developed to forecast their pharmacokinetic performance. 3DP were successfully achieved loading 25, 50 and 100 mg of BNZ. The presence of the IPEC in the ink caused a decrease in the crystalline domain of BNZ and facilitated the printing process, reaching a print success rate of 83.3 %. Interestingly, 3DP-IPEC showed accelerated release dissolution profiles, releasing over 85 % of BNZ in 90 min, while 3DP took up to 48 h for doses above 25 mg. The PBPK model demonstrated that 3DP-IPEC tablets would present high bioavailability (0.92), higher than 3DP (0.36) and similar to the commercial product. This breakthrough holds immense potential for improving treatment outcomes for neglected diseases.


Assuntos
Doença de Chagas , Liberação Controlada de Fármacos , Nitroimidazóis , Impressão Tridimensional , Comprimidos , Tripanossomicidas , Nitroimidazóis/química , Nitroimidazóis/administração & dosagem , Nitroimidazóis/farmacocinética , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/química , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacocinética , Solubilidade , Quitosana/química , Medicina de Precisão/métodos , Composição de Medicamentos/métodos , Química Farmacêutica/métodos
2.
Transpl Infect Dis ; : e14336, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980983

RESUMO

BACKGROUND: Chagas disease (ChD) is endemic in many parts of the world and can be transmitted through organ transplantation or reactivated by immunosuppression. Organs from infected donors are occasionally used for transplantation, and the best way of managing the recipients remains a subject of debate. METHODS: We present a single-center cohort study describing a 10-year experience of kidney transplantation in patients at risk of donor-derived ChD and or reactivation. Patients received prophylactic treatment with Benznidazole and were monitored for transmission or reactivation. Monitoring included assessing direct parasitemia, serology, and polymerase chain reaction (PCR). RESULTS: Fifty-seven kidney transplant recipients (KTRs) were enrolled in the study. Forty-four patients (77.2%) were at risk of primary ChD infection, nine patients (15.8%) were at risk of disease reactivation, and four patients (7.0%) were at risk of both. All patients received Benznidazole prophylaxis, starting on the first day after transplantation. Parasitemia was assessed in 51 patients (89.5%), serology also in 51 patients (89.5%), and PCR in 40 patients (70.2%). None of the patients exhibited clinically or laboratory-detectable signs of disease. A single patient experienced a significant side effect, a cutaneous rash with intense pruritus. At 1-year post-transplantation, the patient and graft survival rates were 96.5% and 93%, respectively. CONCLUSION: In this study, no donor-derived or reactivation of Trypanosoma cruzi infection occurred in KTRs receiving Benznidazole prophylaxis.

3.
Pharmaceutics ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931921

RESUMO

Chagas disease (CD) is a worldwide public health problem. Benznidazole (BZ) is the drug used to treat it. However, in its commercial formulation, it has significant side effects and is less effective in the chronic phase of the infection. The development of particulate systems containing BZ is therefore being promoted. The objective of this investigation was to develop polymeric nanoparticles loaded with BZ and examine their trypanocidal impact in vitro. Two formulas (BNP1 and BNP2) were produced through double emulsification and freeze drying. Subsequent to physicochemical and morphological assessment, both formulations exhibited adequate yield, average particle diameter, and zeta potential for oral administration. Cell viability was assessed in H9C2 and RAW 264.7 cells in vitro, revealing no cytotoxicity in cardiomyocytes or detrimental effects in macrophages at specific concentrations. BNP1 and BNP2 enhanced the effect of BZ within 48 h using a treatment of 3.90 µg/mL. The formulations notably improved NO reduction, particularly BNP2. The findings imply that the compositions are suitable for preclinical research, underscoring their potential as substitutes for treating CD. This study aids the quest for new BZ formulations, which are essential in light of the disregard for the treatment of CD and the unfavorable effects associated with its commercial product.

4.
J Clin Med ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731093

RESUMO

Background: For indigenous people in Colombia, high infection rates with Chagas disease (CD) are known. Methods: In 2018 and 2020, nine villages were screened for CD. CD-positive patients could enter a drug observed treatment. While, in 2018, Benznidazole (BNZ) was provided as the first-line drug by the government, nifurtimox (NFX) was administered in 2020. Results: Of 121 individuals treated with BNZ, 79 (65%) suffered from at least one adverse event (AE). Of 115 treated with NFX, at least one AE occurred in 96 (84%) patients. In 69% of BNZ cases, the side effects did not last longer than one day; this applied to 31% of NFX cases. Excluding extreme outlier values, average duration of AEs differed highly significantly: BNZ (M = 0.7, SD = 1.4) and NFX (M = 1.7, SD = 1.5, p < 0.001). Using an intensity scale, AEs were highly significantly more severe for NFX (M = 2.1, SD = 0.58) compared to BZN (M = 1.1, SD = 0.38), p < 0.001. When analyzing the duration in relation to the intensity, the burden of AEs caused by NFX was significantly more pronounced. Dropouts (n = 2) due to AEs were in the NFX-group only. Conclusions: Side effects caused by BNZ were significantly fewer, as well as milder, shorter in duration, and more easily treatable, compared to NFX.

5.
Expert Opin Drug Discov ; 19(6): 741-753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715393

RESUMO

INTRODUCTION: Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED: Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION: Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.


Assuntos
Doença de Chagas , Descoberta de Drogas , Resistência a Medicamentos , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Nitroimidazóis/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Tripanossomicidas/farmacologia , Humanos , Animais , Descoberta de Drogas/métodos , Desenvolvimento de Medicamentos
6.
Beilstein J Nanotechnol ; 15: 333-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590427

RESUMO

Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.

7.
Folia Parasitol (Praha) ; 712024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38526232

RESUMO

Chagas disease (CD) is a neglected disease caused by Trypanosoma cruzi Chagas, 1909. Causative treatment can be achieved with two drugs: benznidazole or Nifurtimox. There are some gaps that hinder progress in eradicating the disease. There is no test that can efficiently assess cure control after treatment. Currently, the decline in anti-T. cruzi antibody titres is assessed with conventional serological tests, which can take years. However, the search for new markers of cure must continue to fill this gap. The present study aimed to evaluate the decline in serological titres using chimeric proteins after treatment with benznidazole in chronic patients diagnosed with CD. It was a prospective cross-sectional cohort study between 2000 and 2004 of T. cruzi-positive participants from the Añatuya region (Argentina) treated with benznidazole. Serum samples from ten patients were collected before treatment (day zero) and after the end of treatment (2, 3, 6, 12, 24 and 36 months). For the detection of anti-T. cruzi antibodies, an indirect ELISA was performed using two chimeric recombinant proteins (IBMP-8.1 and IBMP-8.4) as antigens. The changes in reactivity index within the groups before and after treatment were evaluated using the Friedman test. All participants experienced a decrease in serological titres after treatment with benznidazole, especially IBMP-8.1. However, due to the small number of samples and the short follow-up period, it is premature to conclude that this molecule serves as a criterion for sustained cure. Further studies are needed to validate tests based on these or other biomarkers to demonstrate parasitological cure.


Assuntos
Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Estudos Transversais , Estudos Prospectivos , Doença de Chagas/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico
8.
Front Immunol ; 15: 1280877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533504

RESUMO

Background/Introduction: Adipose tissue (AT) has been highlighted as a promising reservoir of infection for viruses, bacteria and parasites. Among them is Trypanosoma cruzi, which causes Chagas disease. The recommended treatment for the disease in Brazil is Benznidazole (BZ). However, its efficacy may vary according to the stage of the disease, geographical origin, age, immune background of the host and sensitivity of the strains to the drug. In this context, AT may act as an ally for the parasite survival and persistence in the host and a barrier for BZ action. Therefore, we investigated the immunomodulation of T. cruzi-infected human AT in the presence of peripheral blood mononuclear cells (PBMC) where BZ treatment was added. Methods: We performed indirect cultivation between T. cruzi-infected adipocytes, PBMC and the addition of BZ. After 72h of treatment, the supernatant was collected for cytokine, chemokine and adipokine assay. Infected adipocytes were removed to quantify T. cruzi DNA, and PBMC were removed for immunophenotyping. Results: Our findings showed elevated secretion of interleukin (IL)-6, IL-2 and monocyte chemoattractant protein-1 (MCP-1/CCL2) in the AT+PBMC condition compared to the other controls. In contrast, there was a decrease in tumor necrosis factor (TNF) and IL-8/CXCL-8 in the groups with AT. We also found high adipsin secretion in PBMC+AT+T compared to the treated condition (PBMC+AT+T+BZ). Likewise, the expression of CD80+ and HLA-DR+ in CD14+ cells decreased in the presence of T. cruzi. Discussion: Thus, our findings indicate that AT promotes up-regulation of inflammatory products such as IL-6, IL-2, and MCP-1/CCL2. However, adipogenic inducers may have triggered the downregulation of TNF and IL-8/CXCL8 through the peroxisome proliferator agonist gamma (PPAR-g) or receptor expression. On the other hand, the administration of BZ only managed to reduce inflammation in the microenvironment by decreasing adipsin in the infected culture conditions. Therefore, given the findings, we can see that AT is an ally of the parasite in evading the host's immune response and the pharmacological action of BZ.


Assuntos
Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Interleucina-8 , Leucócitos Mononucleares , Fator D do Complemento , Interleucina-2/uso terapêutico , Tecido Adiposo , Adipócitos , Fator de Necrose Tumoral alfa/uso terapêutico , Imunidade , Falha de Tratamento
9.
Parasite Immunol ; 46(2): e13024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385576

RESUMO

Studies involving the immune response in Chagas disease suggest an imbalance in the immune response of symptomatic patients, with an inflammatory profile dominating in Chagas heart disease, mainly by tumour necrosis factor (TNF). TNF is considered a key cytokine in immunopathology in chronic carriers in several processes during the immune response. Our work aimed to evaluate regulatory (interleukin [IL]-4 and IL-10) and inflammatory (TNF, interferon-gamma [IFN-γ], IL-2 and IL-6) cytokines in peripheral blood mononuclear cells culture supernatants. of affected patients with undetermined clinical forms-IND (n = 13) mild heart form-CARD1 (n = 13) and severe cardiac form-CARD2 (n = 16), treated in vitro with two TNF blockers, Adalimumab (ADA) and Etanercept (ETA) alone or in association with Benznidazole (BZ). The results indicate that ADA was more competent in blocking TNF (compared to ETA) in all groups but with much lower levels in the CARD2 group. ETA statistically decreased TNF levels only in the CARD2 group. IFN-γ increased in the CARD2 group after treatment with ETA relative to ADA. IL-4 had its levels decreased when treated by both drugs. IL-2 was detected in cells from CARD2 carriers compared to the NEG group after treatment with both drugs. The association with BZ decreased levels of IL-2/TNF and increased IL-4. These data reinforce the participation of TNF in severe Chagas heart disease and bring perspectives on using these blockers in the immunological treatment of Chagas disease since the use of BZ is extremely limited in these patients.


Assuntos
Doença de Chagas , Cardiopatias , Nitroimidazóis , Humanos , Doença de Chagas/tratamento farmacológico , Citocinas , Cardiopatias/tratamento farmacológico , Cardiopatias/parasitologia , Interferon gama , Interleucina-2 , Interleucina-4 , Leucócitos Mononucleares , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa
10.
J Pharm Biomed Anal ; 235: 115634, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37595356

RESUMO

Monoglycerides (MGs) such as glycerol monolaurate (GML) and glycerol monostearate (GMS) have been used as excipients in oral formulations because of their emulsifying effect as well as their ability to inhibit the precipitation and intestinal efflux of drugs. Excipient-drug compatibility studies, however, have been underexplored. In this study, benznidazole (BNZ) was selected as a drug model due to the difficulty in improving its solubility and because of the potential impact on public health (it is the only drug currently used to treat Chagas disease). The effect of different processing conditions (maceration, ball milling, and melting) on the physical-chemistry properties of BNZ/MGs mixtures was investigated to guide the rational development of new solid formulations. GML was more effective in improving the solubility of BNZ, which could be due to its more malleable structure, less hydrophobic nature, and greater interaction with BNZ. The formation of hydrogen bonds between the imidazole group of BNZ and the polar region of GML was confirmed by spectroscopy analyses (IR, 1H NMR). The higher the monoglyceride content in the mixture, the higher the BNZ solubility. Regardless of the method of processing the mixture, the drug was found to be crystalline. Polarized light microscopy analysis showed the presence of spherulites. Overall, these findings suggest that preparation methods of BNZ:MGs formulations that involve thermal or/and mechanical treatment have a low impact on the solid properties of the material, and this allows for the production of formulations with reproducible performance.


Assuntos
Monoglicerídeos , Nitroimidazóis , Excipientes , Glicerídeos
11.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569250

RESUMO

Cyclophilins (CyPs) are a family of enzymes involved in protein folding. Trypanosoma cruzi, the causative agent of Chagas disease, has a 19-kDa cyclophilin, TcCyP19, that was found to be secreted in parasite stages of the CL Brener clone and recognized by sera from T. cruzi-infected mice and patients. The levels of specific antibodies against TcCyP19 in T. cruzi-infected mice and subjects before and after drug treatment were measured by an in-house enzyme linked immunosorbent assay (ELISA). Mice in the acute and chronic phase of infection, with successful trypanocidal treatments, showed significantly lower anti-TcCyP19 antibody levels than untreated mice. In children and adults chronically infected with T. cruzi, a significant decrease in the anti-TcCyP19 titers was observed after 12 months of etiological treatment. This decrease was maintained in adult chronic patients followed-up 30-38 months post-treatment. These results encourage further studies on TcCyP19 as an early biomarker of trypanocidal treatment efficiency.

12.
Int J Pharm ; 642: 123120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37307960

RESUMO

Benznidazole, a poorly soluble in water drug, is the first-line medication for the treatment of Chagas disease, but long treatment periods at high dosages cause several adverse effects with insufficient activity in the chronic phase. According to these facts, there is a serious need for novel benznidazole formulations for improving the chemotherapy of Chagas disease. Thus, this work aimed to incorporate benznidazole into lipid nanocapsules for improving its solubility, dissolution rate in different media, and permeability. Lipid nanocapsules were prepared by the phase inversion technique and were fully characterized. Three formulations were obtained with a diameter of 30, 50, and 100 nm and monomodal size distribution with a low polydispersity index and almost neutral zeta potential. Drug encapsulation efficiency was between 83 and 92 % and the drug loading was between 0.66 and 1.04 %. Loaded formulations were stable under storage for one year at 4 °C. Lipid nanocapsules were found to protect benznidazole in simulated gastric fluid and provide a sustained release platform for the drug in a simulated intestinal fluid containing pancreatic enzymes. The small size and the almost neutral surface charge of these lipid nanocarriers improved their penetration through mucus and such formulations showed a reduced chemical interaction with gastric mucin glycoproteins. LNCs. The incorporation of benznidazole in lipid nanocapsules improved the drug permeability across intestinal epithelium by 10-fold compared with the non-encapsulated drug while the exposure of the cell monolayers to these nanoformulations did not affect the integrity of the epithelium.


Assuntos
Nanocápsulas , Nanocápsulas/química , Liberação Controlada de Fármacos , Lipídeos/química , Permeabilidade , Estabilidade de Medicamentos
13.
Parasit Vectors ; 16(1): 167, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217925

RESUMO

BACKGROUND: Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS: All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS: The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS: The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Transcriptoma , Perfilação da Expressão Gênica , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia
14.
Parasite Immunol ; 45(6): e12983, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066749

RESUMO

Benznidazole (Bz) is the recommended drug for the treatment of Chagas disease; however, its efficacy may vary according to the sensitivity of Trypanosoma cruzi strains to the drug and host immune background. The study evaluated the immune response of peripheral blood mononuclear cells (PBMC) that were infected in vitro with the Colombian strain (Col) and treated with Bz. The co-cultures were incubated for 24 h, 5 and 10 days, where cytokine dosage was performed in the supernatant and evaluation of the cells for CD28+ and CTLA-4+ molecules in CD4+ and CD8+ lymphocytes, and CD80+ , CD86+ and HLA-DR+ in CD14+ cells. The results showed that Col induced a strong inflammatory response, with an increase in IFN-γ and TNF early in the infection (24 h), however, from 5 days of infection on, TNF production declined, and IL-10 production increased, which may be associated with a control mechanism of the exacerbated inflammatory response. The Bz treatment did not significantly alter the frequencies of the phenotypes evaluated both T cell subsets and CD14+ cells. Therefore, this study reinforces the need for typing the patient's strain to guide therapy and promote individualized treatment protocols due to the heterogeneous genetic background among T. cruzi strains.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Leucócitos Mononucleares , Colômbia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
15.
Pharmaceutics ; 15(4)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37111612

RESUMO

Benznidazole (BZ) tablets are the currently prescribed treatment for Chagas disease. However, BZ presents limited efficacy and a prolonged treatment regimen with dose-dependent side effects. The design and development of new BZ subcutaneous (SC) implants based on the biodegradable poly-ɛ-caprolactone (PCL) is proposed in this study for a controlled release of BZ and to improve patient compliance. The BZ-PCL implants were characterized by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy, which indicated that BZ remains in its crystalline state dispersed in the polymer matrix with no polymorphic transitions. BZ-PCL implants, even at the highest doses, induce no alteration of the levels of hepatic enzymes in treated animals. BZ release from implants to blood was monitored in plasma during and after treatment in healthy and infected animals. Implants at equivalent oral doses increase the body's exposure to BZ in the first days compared with oral therapy, exhibiting a safe profile and allowing sustained BZ concentrations in plasma to induce a cure of all mice in the experimental model of acute infection by the Y strain of T. cruzi. BZ-PCL implants have the same efficacy as 40 daily oral doses of BZ. Biodegradable BZ implants are a promising option to reduce failures related to poor adherence to treatment, with more comfort for patients, and with sustained BZ plasma concentration in the blood. These results are relevant for optimizing human Chagas disease treatment regimens.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36867997

RESUMO

Benznidazole is the main drug used in Chagas disease and its determination in plasma samples is useful in several situations. Hence, robust and accurate bioanalytical methods are needed. In this context, sample preparation deserves special attention, as it is the most error-prone, labor-intensive and time-consuming step. Microextraction by packed sorbent (MEPS) is a miniaturized technique, developed to minimize the use of hazardous solvents and sample amount. In this context, this study aimed to develop and validate a MEPS coupled to high performance liquid chromatography method for the analysis of benznidazole in human plasma. MEPS optimization was performed by a 24 full factorial experimental design, which resulted in about 25 % of recovery. The best condition was achieved when 500 µL of plasma,10 draw-eject cycles, sample volume drawn of 100 µL, and desorption with three times of 50 µL of acetonitrile were used. The chromatographic separation was performed with a C18 (150 × 4.5 mm, 5 µm) column. The mobile phase was composed of water:acetonitrile (60:40) at a flow rate of 1.0 mL min-1. The developed method was validated and proved to be selective, precise, accurate, robust and linear in the range from 0.5 to 6.0 µg mL-1. The method was applied to three healthy volunteers that made use of benznidazole tablets and showed to be adequate to assess this drug in plasma samples.


Assuntos
Microextração em Fase Sólida , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Solventes/química , Microextração em Fase Sólida/métodos
17.
Int J Biol Macromol ; 230: 123272, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649864

RESUMO

Nanotechnology is a crucial technology in recent years has resulted in new and creative applications of nanomedicine. Polymeric nanoparticles have increasing demands in pharmaceutical applications and require high reproducibility, homogeneity, and control over their properties. Work explores the use of cashew phthalate gum (PCG) as a particle-forming polymer. PCG exhibited a pH-sensitive behavior due to the of acid groups on its chains, and control drug release. We report the development of nanoparticles carrying benznidazole. Formulations were characterized by DLS, encapsulation efficiency, drug loading, FTIR, pH-responsive behavior, release, and in vitro kinetics. Interaction between polymer and drug was an evaluated by molecular dynamics. Morphology was observed by SEM, and in vitro cytotoxicity by MTT assay. Trypanocidal effect for epimastigote and trypomastigote forms was also evaluated. NPs responded to the slightly basic pH, triggering the release of BNZ. In acidic medium, they presented small size, spherical shape, and good stability. It was indicated NP with enhanced biological activity, reduced cytotoxicity, high anti T. cruzi performance, and pH-sensitive release. This work investigated properties related to the development and enhancement of nanoparticles. PCG has specific physicochemical properties that make it a promising alternative to drug delivery, however, there are still challenges to be overcome.


Assuntos
Anacardium , Nanopartículas , Trypanosoma cruzi , Reprodutibilidade dos Testes , Nanopartículas/química , Liberação Controlada de Fármacos , Polímeros/farmacologia , Concentração de Íons de Hidrogênio , Portadores de Fármacos/farmacologia
18.
J Infect Dis ; 227(11): 1322-1332, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36571148

RESUMO

BACKGROUND: A drawback in the treatment of chronic Chagas disease (American trypanosomiasis) is the long time required to achieve complete loss of serological reactivity, the standard for determining treatment efficacy. METHODS: Antibody-secreting cells and memory B cells specific for Trypanosoma cruzi and their degree of differentiation were evaluated in adult and pediatric study participants with chronic Chagas disease before and after etiological treatment. RESULTS: T. cruzi-specific antibody-secreting cells disappeared from the circulation in benznidazole or nifurtimox-treated participants with declining parasite-specific antibody levels after treatment, whereas B cells in most participants with unaltered antibody levels were low before treatment and did not change after treatment. The timing of the decay in parasite-specific antibody-secreting B cells was similar to that in parasite-specific antibodies, as measured by a Luminex-based assay, but preceded the decay in antibody levels detected by conventional serology. The phenotype of total B cells returned to a noninfection profile after successful treatment. CONCLUSIONS: T. cruzi-specific antibodies in the circulation of chronically T. cruzi-infected study participants likely derive from both antigen-driven plasmablasts, which disappear after successful treatment, and long-lived plasma cells, which persist and account for the low frequency and long course to complete seronegative conversion in successfully treated participants.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Resultado do Tratamento , Linfócitos B , Nifurtimox/uso terapêutico , Infecção Persistente , Tripanossomicidas/uso terapêutico , Doença Crônica
19.
Trop Med Int Health ; 28(1): 2-16, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420767

RESUMO

OBJECTIVES: To determine the comparative efficacy and safety of a fixed dose of benznidazole (BZN) with an adjusted-dose for Trypanosoma cruzi-seropositive adults without cardiomyopathy. METHODS: We conducted a systematic review and individual participant data (IPD) meta-analysis following Cochrane methods, and the PRISMA-IPD statement for reporting. Randomised controlled trials (RCTs) allocating participants to fixed or adjusted doses of BZN for T. cruzi-seropositive adults without cardiomyopathy were included. We searched (December 2021) Cochrane, MEDLINE, EMBASE, LILACS and trial registries and contacted Chagas experts. Selection, data extraction, risk of bias assessment using the Cochrane tool, and a GRADE summary of finding tables were performed independently by pairs of reviewers. We conducted a random-effects IPD meta-analysis using the one-stage strategy, or, if that was impossible, the two-stage strategy. RESULTS: Five RCTs (1198 patients) were included, none directly comparing fixed with adjusted doses of BZN. Compared to placebo, BZN therapy was strongly associated with negative qPCR and sustainable parasitological clearance regardless of the type of dose and subgroup analysed. For negative qPCR, the fixed/adjusted rate of odds ratios (RORF/A ) was 8.83 (95% CI 1.02-76.48); for sustained parasitological clearance, it was 4.60 (95% CI 0.40-52.51), probably indicating at least non-inferior effect of fixed doses, with no statistically significant interactions by scheme for global and most subgroup estimations. The RORF/A for treatment interruption due to adverse events was 0.44 (95% CI 0.14-1.38), probably indicating no worse tolerance of fixed doses. CONCLUSIONS: We found no direct comparison between fixed and adjusted doses of BZN. However, fixed doses versus placebo are probably not inferior to weight-adjusted doses of BZN versus placebo in terms of parasitological efficacy and safety. Network IPD meta-analysis, through indirect comparisons, may well provide the best possible answers in the near future. REGISTRATION: The study protocol was registered in PROSPERO (CRD42019120905).


Assuntos
Cardiomiopatias , Doença de Chagas , Trypanosoma cruzi , Adulto , Humanos , Lacunas de Evidências , Doença de Chagas/tratamento farmacológico
20.
J Inorg Biochem ; 239: 112047, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36428157

RESUMO

Currently the only drug available to treat Chagas disease in Brazil is benznidazole (BZN). Therefore, there is an urgent need to discover and develop new anti- Trypanosoma cruzi candidates. In our continuous effort to enhance clinical antiparasitic drugs using synergistic strategy, BZN was coordinated to silver and copper ions to enhance its effectiveness to treat that illness. In this work, the syntheses of four novel metal-BZN complexes, [Ag(BZN)2]NO3·H2O (1), [CuCl2(BZN)(H2O)]·1/2CH3CN (2), [Ag(PPh3)2(BZN)2]NO3·H2O (3), and [Cu(PPh3)2(BNZ)2]NO3·2H2O (4), and their characterization using multiple analytical and spectroscopic techniques such as Infrared (FTIR), Nuclear Magnetic Resonance (1H, 13C, 31P), UV-Visible (UV-Vis), Electron Paramagnetic Resonance (EPR), conductivity and elemental analysis are described. IC50 (Half-maximal inhibitory concentration) values of Ag-BZN compounds are about five to ten times lower than benznidazole itself in both proliferation stages of the parasite (epimastigotes and amastigotes). The cytotoxicity of both compounds in human cells (fibroblasts and hepatocytes) are comparable to BZN, indicating that Ag-BZN complexes can be more selective than BZN.


Assuntos
Anti-Infecciosos , Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Prata/farmacologia , Cobre/farmacologia , Cobre/uso terapêutico , Antiparasitários/farmacologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Anti-Infecciosos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA