RESUMO
Human health is strongly mediated by the gut microbiota ecosystem, which, in turn, depends not only on its state but also on its dynamics and how it responds to perturbations. Healthy microbiota ecosystems tend to be in criticality and antifragile dynamics corresponding to a maximum complexity configuration, which may be assessed with information and network theory analysis. Under this complex system perspective, we used a new analysis of published data to show that a children's population with an industrialized urban lifestyle from Mexico City exhibits informational and network characteristics similar to parasitized children from a rural indigenous population in the remote mountainous region of Guerrero, México. We propose then, that in this critical age for gut microbiota maturation, the industrialized urban lifestyle could be thought of as an external perturbation to the gut microbiota ecosystem, and we show that it produces a similar loss in criticality/antifragility as the one observed by internal perturbation due to parasitosis by the helminth A. lumbricoides. Finally, several general complexity-based guidelines to prevent or restore gut ecosystem antifragility are discussed.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Criança , População Rural , Estilo de Vida , México/epidemiologiaRESUMO
Most models of complex systems have been homogeneous, i.e., all elements have the same properties (spatial, temporal, structural, functional). However, most natural systems are heterogeneous: few elements are more relevant, larger, stronger, or faster than others. In homogeneous systems, criticality-a balance between change and stability, order and chaos-is usually found for a very narrow region in the parameter space, close to a phase transition. Using random Boolean networks-a general model of discrete dynamical systems-we show that heterogeneity-in time, structure, and function-can broaden additively the parameter region where criticality is found. Moreover, parameter regions where antifragility is found are also increased with heterogeneity. However, maximum antifragility is found for particular parameters in homogeneous networks. Our work suggests that the "optimal" balance between homogeneity and heterogeneity is non-trivial, context-dependent, and in some cases, dynamic.
RESUMO
Drug dependence is a debilitating disorder, affecting 30 million people worldwide. In this short review we discuss about the plasticity changes in the reward and defense brain systems induced by early-life psychosocial stressful experiences. Such changes may render persons more vulnerable to illicit drugs use, facilitating behaviors of abuse and development of addiction. We propose that underlying plasticity changes render brain reward system as increasingly fragile because of tolerance and other physiological effects that reduce responsiveness with repeated use. In contrast, we propose that brain defense system makes maintain antifragile mechanisms that generate more robust responses with the prolonged consumption of drugs. Investigating the underlying mechanisms of these brain plasticity changes may advance the development of more efficacious pharmacologic and psychotherapeutic approaches to rehabilitate patients and more efficacious prevention policies to protect children from stressful experiences.
Assuntos
Recompensa , Transtornos Relacionados ao Uso de Substâncias , Encéfalo/fisiologia , Criança , Humanos , Plasticidade Neuronal/fisiologiaRESUMO
Self-organization offers a promising approach for designing adaptive systems. Given the inherent complexity of most cyber-physical systems, adaptivity is desired, as predictability is limited. Here I summarize different concepts and approaches that can facilitate self-organization in cyber-physical systems, and thus be exploited for design. Then I mention real-world examples of systems where self-organization has managed to provide solutions that outperform classical approaches, in particular related to urban mobility. Finally, I identify when a centralized, distributed, or self-organizing control is more appropriate.