Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(5)2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30857355

RESUMO

Three-dimensional (3D) printing technologies can be widely used for producing detailed geometries based on individual and particular demands. Some applications are related to the production of personalized devices, implants (orthopedic and dental), drug dosage forms (antibacterial, immunosuppressive, anti-inflammatory, etc.), or 3D implants that contain active pharmaceutical treatments, which favor cellular proliferation and tissue regeneration. This review is focused on the generation of 3D printed polymer-based objects that present antibacterial properties. Two main different alternatives of obtaining these 3D printed objects are fully described, which employ different polymer sources. The first one uses natural polymers that, in some cases, already exhibit intrinsic antibacterial capacities. The second alternative involves the use of synthetic polymers, and thus takes advantage of polymers with antimicrobial functional groups, as well as alternative strategies based on the modification of the surface of polymers or the elaboration of composite materials through adding certain antibacterial agents or incorporating different drugs into the polymeric matrix.


Assuntos
Anti-Infecciosos/química , Materiais Biocompatíveis/química , Celulose/análogos & derivados , Impressão Tridimensional , Animais , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/efeitos adversos , Humanos
2.
Anticancer Agents Med Chem ; 17(14): 1898-1914, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28530541

RESUMO

BACKGROUND: The need for therapeutically effective anticancer drug delivery systems constantly persuades researchers to explore novel strategies. OBJECTIVE: In this study a novel cubane based antibacterial nanocomposite was tailored as dual chemotherapy drug delivery vesicle in order to increase the therapeutic outcome in cancer therapy. METHOD: The physico-chemical characterization of engineered nanocarrier was assessed by Fourier transforms infrared spectroscopy (FTIR), Hydrogen nuclear magnetic resonance spectroscopy (1H NMR), Thermogravimetric analysis (TGA), and Field emission scanning electron microscopy-energy dispersive using X-ray (FESEMEDX). The antibacterial activity of novel developed nanocomposite was tested by determining minimum inhibitory concentration (MIC) values against Pseudomonas aeruginosa, Escherichia Coli and Candida albicans. RESULTS: In order to investigate the efficacy of novel engineered nanocomposite (with average particle size of 50 nm) as dual anticancer drug delivery, DOX and MTX were bind to nanocarrier with encapsulation efficiency and loading content of around 97.3 ± 2.7% and 20.8 ± 1.6 %, respectively. Dual drugs released simultaneously with distinct tumor targeted, pH responsive sustained release manner. Moreover, the probable antitumoral activity of this engineered nanocomposite system against MCF7 cell lines was evaluated by MTT assay and cell cycle studies. The outcomes showed that novel engineered nanocomposite had no cytotoxic effects, while DOX@MTX-loaded nanocomposite possessed higher growth inhibition property and higher S-phase arrest as compared to cells treated with DOX@MTX alone. CONCLUSION: It was concluded that this novel cubane based drug delivery vehicle could process antibacterial and anticancer therapeutics spontaneously, representing promising tumor targeted system in nanomedicine.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Metotrexato/farmacologia , Nanocompostos/química , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Candida albicans/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Células MCF-7 , Metotrexato/química , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA