Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356773

RESUMO

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.

2.
Front Vet Sci ; 6: 399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850377

RESUMO

As antibiotics are ineffective when used to treat caseous lymphadenitis, the surgical excision of lesions is often required. Iodine solution (10%) is currently the choice for the post-surgical treatment; however, it may cause histotoxicity. Propolis are resinous substances composed by a mixture of different plants parts and molecules secreted by bees. As green propolis has already proven to possess anti-bacterial and wound healing properties, this study aimed to evaluate the use of a green propolis-based ointment as a therapeutic agent for the post-surgical treatment of caseous lymphadenitis. The caseous lesions of 28 sheep were surgically excised before dividing animals into two groups: (1) iodine-treated animals and (2) sheep treated with an ointment made with a previously characterized green propolis extract. Clinical data of animals, size of the scar area, the presence of moisture and secretion in the surgical wound, the humoral immune response against the bacterium and the susceptibility of C. pseudotuberculosis clinical isolates to the green propolis extract were analyzed. The green propolis-treated group presented complete healing of the surgical wound 1 week before the iodine-treated group. Additionally, animals treated with the green propolis ointment had fewer cases of wound secretion, but it was not statistically different from the iodine-treated group. No clinical signs indicating green propolis toxicity or other side effects were found, associated with a faster and more organized hair recovery by propolis use. The green propolis extract was able to inhibit the growth of 23 from the 27 C. pseudotuberculosis clinical isolates, with minimum inhibitory and minimum bactericide concentrations ranging from 01 to 08 mg/mL, and did not interfere with the humoral immune response against the bacterium. In addition, green propolis was able to inhibit biofilm formation by four of the C. pseudotuberculosis clinical isolates. We concluded that green propolis is a promising therapeutic agent to be used in the post-surgical treatment of caseous lymphadenitis in small ruminants due to its effects on surgical wound healing, hair recovery, inhibition of wound contamination and bacterial growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA