Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38337983

RESUMO

Antarctic flowering plants have become enigmatic because of their unique capability to colonize Antarctica. It has been shown that there is not a single trait that makes Colobanthus quitensis and Deschampsia antarctica so special, but rather a set of morphophysiological traits that coordinately confer resistance to one of the harshest environments on the Earth. However, both their capacity to inhabit Antarctica and their uniqueness remain not fully explained from a biological point of view. These aspects have become more relevant due to the climatic changes already impacting Antarctica. This review aims to compile and update the recent advances in the ecophysiology of Antarctic vascular plants, deepen understanding of the mechanisms behind their notable resistance to abiotic stresses, and contribute to understanding their potential responses to environmental changes. The uniqueness of Antarctic plants has prompted research that emphasizes the role of leaf anatomical traits and cell wall properties in controlling water loss and CO2 exchange, the role of Rubisco kinetics traits in facilitating efficient carbon assimilation, and the relevance of metabolomic pathways in elucidating key processes such as gas exchange, nutrient uptake, and photoprotection. Climate change is anticipated to have significant and contrasting effects on the morphophysiological processes of Antarctic species. However, more studies in different locations outside Antarctica and using the latitudinal gradient as a natural laboratory to predict the effects of climate change are needed. Finally, we raise several questions that should be addressed, both to unravel the uniqueness of Antarctic vascular species and to understand their potential responses to climate change.

2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446390

RESUMO

Warming in the Antarctic Peninsula is one of the fastest on earth, and is predicted to become more asymmetric in the near future. Warming has already favored the growth and reproduction of Antarctic plant species, leading to a decrease in their freezing tolerance (deacclimation). Evidence regarding the effects of diurnal and nocturnal warming on freezing tolerance-related gene expression in D. antarctica is negligible. We hypothesized that freezing tolerance-related gene (such as CBF-regulon) expression is reduced mainly by nocturnal warming rather than diurnal temperature changes in D. antarctica. The present work aimed to determine the effects of diurnal and nocturnal warming on cold deacclimation and its associated gene expression in D. antarctica, under laboratory conditions. Fully cold-acclimated plants (8 °C/0 °C), with 16h/8h thermoperiod and photoperiod duration, were assigned to four treatments for 14 days: one control (8 °C/0 °C) and three with different warming conditions (diurnal (14 °C/0 °C), nocturnal (8 °C/6 °C), and diurnal-nocturnal (14 °C/6 °C). RNA-seq was performed and differential gene expression was analyzed. Nocturnal warming significantly down-regulated the CBF transcription factors expression and associated cold stress response genes and up-regulated photosynthetic and growth promotion genes. Consequently, nocturnal warming has a greater effect than diurnal warming on the cold deacclimation process in D. antarctica. The eco-physiological implications are discussed.


Assuntos
Aclimatação , Temperatura Baixa , Aclimatação/genética , Fatores de Transcrição/metabolismo , Fotossíntese/genética , Perfilação da Expressão Gênica
3.
Plants (Basel) ; 11(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684292

RESUMO

Projected rises in atmospheric CO2 concentration and minimum night-time temperatures may have important effects on plant carbon metabolism altering the carbon balance of the only two vascular plant species in the Antarctic Peninsula. We assessed the effect of nocturnal warming (8/5 °C vs. 8/8 °C day/night) and CO2 concentrations (400 ppm and 750 ppm) on gas exchange, non-structural carbohydrates, two respiratory-related enzymes, and mitochondrial size and number in two species of vascular plants. In Colobanthus quitensis, light-saturated photosynthesis measured at 400 ppm was reduced when plants were grown in the elevated CO2 or in the nocturnal warming treatments. Growth in elevated CO2 reduced stomatal conductance but nocturnal warming did not. The short-term sensitivity of respiration, relative protein abundance, and mitochondrial traits were not responsive to either treatment in this species. Moreover, some acclimation to nocturnal warming at ambient CO2 was observed. Altogether, these responses in C. quitensis led to an increase in the respiration-assimilation ratio in plants grown in elevated CO2. The response of Deschampsia antarctica to the experimental treatments was quite distinct. Photosynthesis was not affected by either treatment; however, respiration acclimated to temperature in the elevated CO2 treatment. The observed short-term changes in thermal sensitivity indicate type I acclimation of respiration. Growth in elevated CO2 and nocturnal warming resulted in a reduction in mitochondrial numbers and an increase in mitochondrial size in D. antarctica. Overall, our results suggest that with climate change D. antarctica could be more successful than C. quitensis, due to its ability to make metabolic adjustments to maintain its carbon balance.

4.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628551

RESUMO

Deschampsia antarctica Desv. (Poaceae) is one of the two vascular plants that have colonized the Antarctic Peninsula, which is usually exposed to extreme environmental conditions. To support these conditions, the plant carries out modifications in its morphology and metabolism, such as modifications to the cell wall. Thus, we performed a comparative study of the changes in the physiological properties of the cell-wall-associated polysaccharide contents of aerial and root tissues of the D. antarctica via thermogravimetric analysis (TGA) combined with a computational approach. The result showed that the thermal stability was lower in aerial tissues with respect to the root samples, while the DTG curve describes four maximum peaks of degradation, which occurred between 282 and 358 °C. The carbohydrate polymers present in the cell wall have been depolymerized showing mainly cellulose and hemicellulose fragments. Additionally, a differentially expressed sequence encoding for an expansin-like (DaEXLA2), which is characterized by possessing cell wall remodeling function, was found in D. antarctica. To gain deep insight into a probable mechanism of action of the expansin protein identified, a comparative model of the structure was carried out. DaEXLA2 protein model displayed two domains with an open groove in the center. Finally, using a cell wall polymer component as a ligand, the protein-ligand interaction was evaluated by molecular dynamic (MD) simulation. The MD simulations showed that DaEXLA2 could interact with cellulose and XXXGXXXG polymers. Finally, the cell wall component description provides the basis for a model for understanding the changes in the cell wall polymers in response to extreme environmental conditions.


Assuntos
Parede Celular , Poaceae , Celulose/química , Ligantes , Simulação de Dinâmica Molecular , Poaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA