Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neotrop Entomol ; 53(3): 514-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687425

RESUMO

The concept of Ecosystem Services (ES) recognizes the importance of natural ecosystems in supporting human well-being. Hymenoptera, a diverse group of insects including ants, bees, and wasps, play crucial roles in providing ESs. Despite their significance, the provision of ESs by Hymenoptera is often undervalued, leading to ecosystem degradation and loss of important services. This study focuses on the association between Hymenoptera and a rupicolous bromeliad species (Encholirium spectabile) and explores the ESs promoted directly and indirectly by these insects. The study area is located in the Caatinga region of Brazil, characterized by irregular rainfall and a dry season. The results show that Hymenoptera, particularly bees, ants, and wasps, provide a range of ESs including pollination, honey production, pest control, cultural symbolism, and educational value. These services are vital for plant reproduction, food production, and ecosystem functioning in both seasons; there are no differences in species richness between seasons, but rather in species composition. Understanding the importance of Hymenoptera for ESs is crucial for informing conservation and management practices to ensure the sustainability of natural ecosystems. The study highlights the need for conservation actions to protect the intricate ecological relationships between Hymenoptera and bromeliads, which indirectly support ESs by providing habitat and resources, especially during droughts when resources are scarce in the region. By recognizing the importance of bromeliads in supporting Hymenopteran communities, conservation efforts can focus on preserving these critical ecological interactions and maintaining ES provision.


Assuntos
Bromeliaceae , Ecossistema , Himenópteros , Animais , Brasil , Himenópteros/fisiologia , Polinização , Abelhas , Estações do Ano , Vespas/fisiologia , Formigas
2.
Neotrop Entomol ; 53(3): 568-577, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687426

RESUMO

Bromeliads play a vital role in preserving biodiversity in the Neotropical region. To understand their impact on arthropod diversity in Brazil's semi-arid region, we studied the rupicolous bromeliad Encholirium spectabile. From 2011 to 2018, we observed the arthropod fauna in E. spectabile clumps, documenting the associated taxa, their abundance, and interactions. We also investigated how seasonality affects arthropod richness and composition during the dry and rainy seasons. Over the observation period, 15 orders and 57 arthropod families were recorded in association with E. spectabile. Insecta dominated, followed by predatory chelicerates. Eight usage categories were identified, with Shelter being the most prevalent, followed by Predators, Nesters, and Nectarivores. Significant differences in taxonomic richness were noted between rainy and dry seasons, with the rainy season exhibiting higher diversity. Seasonal variation was also observed in species composition. Clumps of E. spectabile emerged as crucial habitats for surrounding arthropod fauna. This research underscores the importance of non-phylotelm bromeliads, particularly in high abiotic stress environments like semi-arid regions. The taxonomic diversity observed aligns with findings from diverse environments, shedding light on the relevance of E. spectabile for associated arthropod fauna. These results prompt further exploration of non-phylotelm bromeliads in semi-arid settings, providing a fresh perspective on their significance in shaping arthropod communities.


Assuntos
Artrópodes , Biodiversidade , Bromeliaceae , Estações do Ano , Animais , Brasil , Artrópodes/classificação , Ecossistema
3.
Protoplasma ; 260(3): 935-947, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36445484

RESUMO

Mabea fistulifera, a species pollinated mainly by diurnal and nocturnal vertebrates, presents pendulous inflorescences with approximately 70 pairs of nuptial nectaries (NNs). These NNs exude voluminous nectar drops that defy gravity, remaining exposed at the inflorescence for more than a day. We aimed to investigate the NN secretory process and the unique nectar presentation of M. fistulifera. NNs and their exudate were collected at different secretory stages and submitted to structural studies and chemical analysis. The epidermis is devoid of stomata and constitutes the main site of synthesis for non-sugar metabolites found on nectar and nectar-coating film. Nectary parenchyma presents few small starch grains, and vascular strands are distributed until the nectary parenchyma cells close to the epidermis. Vascular tissues at the nectary parenchyma seem to provide sugar and water for the nectar. A film composed of lipids, alkaloids, and proteins covers the nectar drops. The film guarantees the nectar offering for several hours, as it minimizes water loss and prevents falls by gravitational action. The release of large nectar drops is intrinsically linked to the NN anatomical traits and the exudate composition. Low sugar concentration and predominance of hexoses in M. fistulifera nectar are essential for maintaining nectar exudation for many hours, which results in the visitation of a broad spectrum of pollinators.


Assuntos
Euphorbiaceae , Néctar de Plantas , Animais , Néctar de Plantas/química , Flores/química , Euphorbiaceae/metabolismo , Via Secretória , Carboidratos
4.
Ecology ; 101(11): e03150, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32730670

RESUMO

Ongoing climate change is shifting the geographic distributions of some species, potentially imposing rapid changes in local community structure and ecosystem functioning. Besides changes in population-level interspecific interactions, such range shifts may also cause changes in functional structure within the host assemblages, which can result in losses or gains in ecosystem functions. Because consumer-resource dynamics are central to community regulation, functional reorganization driven by introduction of new consumer species can have large consequences on ecosystem functions. Here we experimentally examine the extent to which the recent poleward range expansion of the intertidal grazer limpet Scurria viridula along the coast of Chile has altered the role of the resident congeneric limpet S. zebrina, and whether the net collective impacts, and functional structure, of the entire herbivore guild have been modified by the introduction of this new member. We examined the functional role of Scurria species in controlling ephemeral algal cover, bare rock availability, and species richness and diversity, and compared the effects in the region of range overlap against their respective "native" abutted ranges. Experiments showed depression of per capita effects of the range-expanded species within the region of overlap, suggesting environmental conditions negatively affect individual performance. In contrast, effects of S. zebrina were commonly invariant at its range edge. When comparing single species versus polycultures, effects on bare rock cover were altered by the presence of the other Scurria species, suggesting competition between Scurria species. Importantly, although the magnitude of S. viridula effects at the range overlap was reduced, its addition to the herbivore guild seems to complement and intensify the role of the guild in reducing green algal cover, species richness and increasing bare space provision. Our study thus highlights that range expansion of an herbivore can modify the functional guild structure in the recipient community. It also highlights the complexity of predicting how functional structure may change in the face of natural or human-induced range expansions. There is a need for more field-based examination of regional functional compensation, complementarity, or inhibition before we can construct a conceptual framework to anticipate the consequences of species range expansions.


Assuntos
Ecossistema , Gastrópodes , Animais , Biodiversidade , Chile , Mudança Climática , Herbivoria , Humanos
5.
Stud Neotrop Fauna Environ, v. 53, n. 3, p. 184-193, abr. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4115

RESUMO

The vegetative architecture of the Cactaceae provides sites used by spiders as hideout, foraging, mating and oviposition. We found more web weavers in plants with cylindrical cladodia and more hunters in plants with flat cladodia. Between February 2014 and January 2015 1551 spiders distributed in 20 families were collected: one of these families, Palpimanidae, had only juvenile individuals collected; of the other 19 families, 80 species/morphospecies were identified. This work aims to contribute to the knowledge of biodiversity in the canopy of the Atlantic Forest, especially the relationship between cacti and spiders.

6.
Ecology ; 98(8): 2049-2058, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28316068

RESUMO

Seed dispersal and seedling recruitment are crucial phases in the life cycle of all spermatophyte plants. The net contribution of seed dispersers to plant establishment is known as seed dispersal effectiveness (SDE) and is defined as the product of a quantitative (number of seeds dispersed) and a qualitative (probability of recruitment) component. In Galápagos, we studied the direct contribution to SDE (number of seeds dispersed and effect on seedling emergence) provided by the five island groups of frugivores (giant tortoises, lizards, medium-sized passerine birds, small non-finch passerine birds, and finches) in the two main habitats in this archipelago: the lowland and the highland zones, and found 16 vertebrate species dispersing 58 plant species. Data on frequency of occurrence of seeds in droppings and number of seeds dispersed per unit area produced contrasting patterns of seed dispersal. Based on the former, giant tortoises and medium-sized passerines were the most important seed dispersers. However, based on the latter, small non-finch passerines were the most important dispersers, followed by finches and medium-sized passerines. The effect of disperser gut passage on seedling emergence varied greatly depending on both the disperser and the plant species. Although the contribution to SDE provided by different disperser guilds changed across plant species, medium-sized passerines (e.g., mockingbirds) provided a higher contribution to SDE than lava lizards in 10 out of 16 plant species analysed, whereas lava lizards provided a higher contribution to SDE than birds in five plant species. While both the quantitative and qualitative components addressed are important, our data suggests that the former is a better predictor of SDE in the Galápagos archipelago.


Assuntos
Dispersão de Sementes , Animais , Equador , Tentilhões , Ilhas , Lagartos , Passeriformes , Sementes , Tartarugas
7.
Sci Adv ; 1(8): e1500525, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26601270

RESUMO

Many insects use nectar as their principal diet and have mouthparts specialized in nectarivory, whereas most nectar-feeding vertebrates are opportunistic users of floral resources and only a few species show distinct morphological specializations. Specialized nectar-feeding bats extract nectar from flowers using elongated tongues that correspond to two vastly different morphologies: Most species have tongues with hair-like papillae, whereas one group has almost hairless tongues that show distinct lateral grooves. Recent molecular data indicate a convergent evolution of groove- and hair-tongued bat clades into the nectar-feeding niche. Using high-speed video recordings on experimental feeders, we show distinctly divergent nectar-feeding behavior in clades. Grooved tongues are held in contact with nectar for the entire duration of visit as nectar is pumped into the mouths of hovering bats, whereas hairy tongues are used in conventional sinusoidal lapping movements. Bats with grooved tongues use a specific fluid uptake mechanism not known from any other mammal. Nectar rises in semiopen lateral grooves, probably driven by a combination of tongue deformation and capillary action. Extraction efficiency declined for both tongue types with a similar slope toward deeper nectar levels. Our results highlight a novel drinking mechanism in mammals and raise further questions on fluid mechanics and ecological niche partitioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA