Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(4)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622946

RESUMO

In this paper, the ballistic performance of a multilayered composite inspired by the structural characteristics of nacre is numerically investigated using finite element (FE) simulations. Nacre is a natural composite material found in the shells of some marine mollusks, which has remarkable toughness due to its hierarchical layered structure. The bioinspired nacre-like composites investigated here were made of five wavy aluminum alloy 7075-T651 (AA7075) layers composed of ~1.1-mm thick square tablets bonded together with toughened epoxy resin. Two composite configurations with continuous layers (either wavy or flat) were also studied. The ballistic performance of the composite plates was compared to that of a bulk monolithic AA7075 plate. The ballistic impact was simulated in the 300-600 m/s range using two types of spherical projectiles, i.e., rigid and elastoplastic. The results showed that the nacre plate exhibited improved ballistic performance compared to the bulk plate and the plates with continuous layers. The structural design of the nacre plate improved the ballistic performance by producing a more ductile failure and enabling localized energy absorption via the plastic deformation of the tablets and the globalized energy dissipation due to interface debonding and friction. All the plate configurations exhibited a better ballistic performance when impacted by an elastoplastic projectile compared to a rigid one, which is explained by the projectile plastic deformation absorbing some of the impact energy and the enlarged contact area between the projectile and the plates producing more energy absorption by the plates.

2.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143713

RESUMO

In the aeronautical industry, Al-Cu alloys are used as a structural material in the manufacturing of commercial aircraft due to their high mechanical properties and low density. One of the main issues with these Al-Cu alloy systems is their low corrosion resistance in aggressive substances; as a result, Al-Cu alloys are electrochemically treated by anodizing processes to increase their corrosion resistance. Hard anodizing realized on AA2024 was performed in citric and sulfuric acid solutions for 60 min with constant stirring using current densities 3 and 4.5 A/dm2. After anodizing, a 60 min sealing procedure in water at 95 °C was performed. Scanning electron microscopy (SEM) and Vickers microhardness (HV) measurements were used to characterize the microstructure and mechanical properties of the hard anodizing material. Electrochemical corrosion was carried out using cyclic potentiodynamic polarization curves (CPP) and electrochemical impedance spectroscopy (EIS) in a 3.5 wt. % NaCl solution. The results indicate that the corrosion resistance of Al-Cu alloys in citric acid solutions with a current density 4.5 A/dm2 was the best, with corrosion current densities of 2 × 10-8 and 2 × 10-9 A/cm2. Citric acid-anodized samples had a higher corrosion resistance than un-anodized materials, making citric acid a viable alternative for fabricating hard-anodized Al-Cu alloys.

3.
Materials (Basel) ; 15(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806676

RESUMO

The localized compressive deformation (LCD) effect generated by an indentation process at the crack tip on the fatigue crack growth of the 7075-T651 aluminum alloy is reported. Eccentrically loaded single-edge crack tension specimens (ESE(T)) were pre-cracked at a crack length of about 20 mm by applying a constant amplitude fatigue loading. Subsequently, the LCD process was performed by using a semi-spherical indenter with a radius of 16 mm to compress the crack tip zone at different forces (5.0, 7.0, 12.5, 13.5, 15.5 kN), applied on the opposite surfaces of the specimens. The fatigue cracking process was continued on the compressed samples until an overall crack length of about 30 mm was obtained. The compressive load and the number of delayed cycles is discussed in terms of crack length and crack tip opening displacement (CTOD). A direct relationship between the compressive force induced by the LCD process and the delay of the crack propagation due to the crack arrest was observed. This effect became evident at a compressive force of 5.0 kN, where the crack propagation was arrested for about 9000 cycles in comparison with the non-LCD sample. However, when the force increased, the crack arrest also increased. The crack was considered to be completely arrested at a compressive load of 15.5 kN, since the crack did not grow after the application of more than 3 × 106 cycles.

4.
Sensors (Basel) ; 21(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561949

RESUMO

Amperometric and potentiometric probes were employed for the detection and characterization of reactive sites on the 2098-T351 Al-alloy (AA2098-T351) using scanning electrochemical microscopy (SECM). Firstly, the probe of concept was performed on a model Mg-Al galvanic pair system using SECM in the amperometric and potentiometric operation modes, in order to address the responsiveness of the probes for the characterization of this galvanic pair system. Next, these sensing probes were employed to characterize the 2098-T351 alloy surface immersed in a saline aqueous solution at ambient temperature. The distribution of reactive sites and the local pH changes associated with severe localized corrosion (SLC) on the alloy surface were imaged and subsequently studied. Higher hydrogen evolution, lower oxygen depletion and acidification occurred at the SLC sites developed on the 2098-T351 Al-alloy.

5.
Materials (Basel) ; 14(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467156

RESUMO

AA7075 aluminum alloy is widely used for several high-technology applications for its high mechanical strength to weight ratio but is still the subject of several studies seeking a further increase in its mechanical properties. A commercial powder is used, either as-received or after ball-milling. Dense AA7075 samples are prepared in one step by Spark Plasma Sintering, at 550 °C with a holding time of 15 min and a uniaxial pressure of 100 MPa. No additional heat treatment is performed. Laser granulometry, X-ray diffraction and optical- and scanning electron microscopy show that both grain size and morphology are preserved in the dense samples, due to the relatively low temperature and short sintering time used. The samples prepared using the ball-milled powder exhibit both higher Vickers microhardness and transverse fracture strength values than those prepared using the raw powder, reflecting the finer microstructure.

6.
Bioelectrochemistry ; 133: 107450, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31978857

RESUMO

Common alloys used for the manufacture of aircrafts are subject to different forms of environmental deterioration. A major one is corrosion, and there is a strong body of evidence suggesting that environmental microorganisms initiate and accelerate it. The development of an appropriate strategy to reduce this process depends on the knowledge concerning the factors involved in corrosion. In this work, a biofilm forming bacterial consortium was extracted in situ from the corrosion products formed in an aircraft exposed to Antarctic media. Two thermophilic bacteria, an Anoxybacillus and a Staphylococcus strain, were successfully isolated from this consortium. Two extracellular enzymes previously speculated to participate in corrosion, catalase and peroxidase, were detected in the extracellular fraction of the consortium. Additionally, we assessed the individual contribution of those thermophilic microorganisms on the corrosion process of 7075-T6 aluminum alloy, which is widely used in aeronautical industry, through electrochemical methods and surface analysis techniques.


Assuntos
Ligas/química , Alumínio/química , Anoxybacillus/fisiologia , Biofilmes , Anoxybacillus/enzimologia , Anoxybacillus/isolamento & purificação , Regiões Antárticas , Corrosão , Oxirredução , Staphylococcus/enzimologia , Staphylococcus/isolamento & purificação , Staphylococcus/fisiologia , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 11(43): 40629-40641, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31589404

RESUMO

In this work, structural and active corrosion inhibition effects induced by lithium ion addition in organic-inorganic coatings based on poly(methyl methacrylate) (PMMA)-silica sol-gel coatings have been investigated. The addition of increasing amounts of lithium carbonate (0, 500, 1000, and 2000 ppm), yielded homogeneous hybrid coatings with increased connectivity of nanometric silica cross-link nodes, covalently linked to the PMMA matrix, and improved adhesion to the aluminum substrate (AA7075). Electrochemical impedance spectroscopy (EIS), performed in 3.5% NaCl aqueous solution, showed that the improved structural properties of coatings with higher lithium loadings result in an increased corrosion resistance, with an impedance modulus up to 50 GΩ cm2, and revealed that the lithium induced self-healing ability significantly improves their durability. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) suggest that the regeneration process occurs by means of lithium ions leaching from the adjacent coating toward the corrosion spot, which is restored by a protective layer of precipitated Li rich aluminum hydroxide species. An analogue mechanism has been proposed for artificially scratched coatings presenting an increase of the impedance modulus after salt spray test compared to the lithium free coating. These results evidence the active role of lithium ions in improving the passive barrier of the PMMA-silica coating and in providing through the self-restoring ability a significantly extended service life of AA7075 alloy exposed to saline environment.

8.
Molecules ; 23(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355974

RESUMO

An experimental protocol was studied to improve the adhesion of a polymeric poly(methyl methacrylate) coating that was modified with silver nanoparticles to an aluminum alloy, AA2024. The nanoparticles were incorporated into the polymeric matrix to add the property of inhibiting biofilm formation to the anticorrosive characteristics of the film, thus also making the coating antibiocorrosive. The protocol consists of functionalizing the surface through a pseudotransesterification treatment using a methyl methacrylate monomer that bonds covalently to the surface and leaves a terminal double bond that promotes and directs the polymerization reaction that takes place in the process that follows immediately after. This results in more compact and thicker poly(methyl methacrylate) (PMMA) coatings than those obtained without pseudotransesterification. The poly(methyl methacrylate) matrix modified with nanoparticles was obtained by incorporating both the nanoparticles and the methyl methacrylate in the reactor. The in situ polymerization involved combining the pretreated AA2024 specimens combined with the methyl methacrylate monomer and AgNps. The antibiofilm capacity of the coating was evaluated against P. aeruginosa, with an excellent response. Not only did the presence of bacteria decrease, but the formation of the exopolymer subunits was 99.99% lower than on the uncoated aluminum alloy or the alloy coated with unmodified poly(methyl methacrylate). As well and significantly, the potentiodynamic polarization measurements indicate that the PMMA-Ag coating has a good anticorrosive property in a 0.1-M NaCl medium.


Assuntos
Ligas , Alumínio , Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Nanopartículas Metálicas , Polimetil Metacrilato , Prata , Ligas/química , Alumínio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectroscopia Fotoeletrônica , Polimetil Metacrilato/química , Pseudomonas aeruginosa/efeitos dos fármacos , Propriedades de Superfície
9.
Braz. arch. biol. technol ; Braz. arch. biol. technol;59(spe2): e16161056, 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839061

RESUMO

ABSTRACT The high strength AA7075 aluminum alloy is commonly used in the aerospace components due to its exclusive mechanical properties like lightweight and high strength. This alloy cannot be welded by fusion welding techniques due to solidification cracking which severely degrade the mechanical properties of the joint. In contrast, through friction stir welding (FSW) process solidification relate defects can be eliminated. Anyhow, the strength of friction stir welded joint is influenced by process parameters and tool parameters. These parameters govern the heat input, metal flow, microstructure evolution and mechanical properties of the weld. In normal welding condition, (without preheating) heat is generated by friction force which is produced between tool and workpiece. In this paper an added heat input through preheating the metal before weld. This preheating temperature effects on microstructure, microhardness and tensile properties of the joints were investigated. From this study the following conclusions are derived. Sufficient heat input should be given to obtain defect free and quality joint. The results showed that, preheating the base metal to 100 °C prior to welding improved the tensile strength and joint efficiency compared to the joints made without preheating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA