RESUMO
Wild adult specimens of the Peruvian anchovy Engraulis ringens were captured and reared to validate the daily periodicity of otolith microincrement formation. The postcapture stress generated spontaneous spawning, making it possible to conduct a rearing trial on larvae first in an artificial nutrient-enriched system (ANES) for 52 days followed by an artificial feeding regime in a culture tank until day 115 post-hatch. Microincrements of the sagittal otoliths of sacrificed juveniles [mean ± S.D. total length (LT ) = 5·13 ± 0·37 cm, range 5-6 cm; c.v. = 7·5%] showed very distinct light and dark zones. The slope of the relationship between the total number of increments after the hatch check and days elapsed after hatching was not significantly different from 1. The transfer from ANES to the artificial feeding regime induced a mark in the sagittal otoliths. The number of microincrements after this induced mark coincided with the number of days elapsed after the transfer date. In parallel experiments, adult E. ringens (mean ± S.D. LT = 14·92 ± 0·55 cm, range 13-16 cm) were exposed to one of two fluorescent marking immersion treatments with either alizarin red S (ARS; 25 mg l(-1) per 6 h) or oxytetracycline hydrochloride (OTC; 200 mg l(-1) per 10 h). The microincrements between fluorescent bands were distinct, ranging from 0·89 to 2·75 µm (mean ± S.D. =1·43 ± 0·28 µm; c.v. = 32%) and from 0·71 to 2·89 µm (1·53 ± 0·27 µm; c.v. = 35%) for ARS and OTC, respectively. The relationship between the number of microincrements between marks and the number of elapsed days for ARS and OCT treatments indicated that there was a significant correspondence between the number of increases observed and the number of days. Hence, daily microincrements of otoliths of E. ringens are likely to be formed in juveniles and adults under natural conditions.
Assuntos
Peixes/crescimento & desenvolvimento , Membrana dos Otólitos/crescimento & desenvolvimento , Animais , PeriodicidadeRESUMO
Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Type I GD is the mildest form and is characterized by the absence of neuronopathic affection. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. The homeostasis of bone tissue is maintained by the balanced processes of bone resorption by osteoclasts and formation by osteoblasts. We decided to test whether bone resorption and/or bone formation could be altered by the use of a chemical in vitro murine model of Gaucher disease. We used two sources of cells from monocyte/macrophages lineage isolated from normal mice, splenocytes (S) and peritoneal macrophages (PM), and were exposed to CBE, the inhibitor of GCase (S-CBE and PM-CBE, respectively). Addition of both conditioned media (CM) from S-CBE and PM-CBE induced the differentiation of osteoclasts precursors from bone marrow to mature and functional osteoclasts. TNF-α could be one of the factors responsible for this effect. On the other hand, addition of CM to an osteoblast cell culture resulted in a reduction in expression of alkaline phosphatase and mineralization process. In conclusion, these results suggest implication of changes in both bone formation and bone resorption and are consistent with the idea that both sides of the homeostatic balance are affected in GD.