Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spora ; 10(1): 65-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006246

RESUMO

Neuropathic pain is caused by nerve injury and involves brain areas such as the central nucleus of the amygdala (CeA). We developed the first 3-D agent-based model (ABM) of neuropathic pain-related neurons in the CeA using NetLogo3D. The execution time of a single ABM simulation using realistic parameters (e.g., 13,000 neurons and 22,000+ neural connections) is an important factor in the model's usability. In this paper, we describe our efforts to improve the computational efficiency of our 3-D ABM, which resulted in a 28% reduction in execution time on average for a typical simulation. With this upgraded model, we performed one- and two-parameter sensitivity analyses to study the sensitivity of model output to variability in several key parameters along the anterior to posterior axis of the CeA. These results highlight the importance of computational modeling in exploring spatial and cell-type specific properties of brain regions to inform future wet lab experiments.

2.
Int J Behav Nutr Phys Act ; 21(1): 54, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720323

RESUMO

BACKGROUND: Transportation policies can impact health outcomes while simultaneously promoting social equity and environmental sustainability. We developed an agent-based model (ABM) to simulate the impacts of fare subsidies and congestion taxes on commuter decision-making and travel patterns. We report effects on mode share, travel time and transport-related physical activity (PA), including the variability of effects by socioeconomic strata (SES), and the trade-offs that may need to be considered in the implementation of these policies in a context with high levels of necessity-based physical activity. METHODS: The ABM design was informed by local stakeholder engagement. The demographic and spatial characteristics of the in-silico city, and its residents, were informed by local surveys and empirical studies. We used ridership and travel time data from the 2019 Bogotá Household Travel Survey to calibrate and validate the model by SES. We then explored the impacts of fare subsidy and congestion tax policy scenarios. RESULTS: Our model reproduced commuting patterns observed in Bogotá, including substantial necessity-based walking for transportation. At the city-level, congestion taxes fractionally reduced car use, including among mid-to-high SES groups but not among low SES commuters. Neither travel times nor physical activity levels were impacted at the city level or by SES. Comparatively, fare subsidies promoted city-level public transportation (PT) ridership, particularly under a 'free-fare' scenario, largely through reductions in walking trips. 'Free fare' policies also led to a large reduction in very long walking times and an overall reduction in the commuting-based attainment of physical activity guidelines. Differential effects were observed by SES, with free fares promoting PT ridership primarily among low-and-middle SES groups. These shifts to PT reduced median walking times among all SES groups, particularly low-SES groups. Moreover, the proportion of low-to-mid SES commuters meeting weekly physical activity recommendations decreased under the 'freefare' policy, with no change observed among high-SES groups. CONCLUSIONS: Transport policies can differentially impact SES-level disparities in necessity-based walking and travel times. Understanding these impacts is critical in shaping transportation policies that balance the dual aims of reducing SES-level disparities in travel time (and time poverty) and the promotion of choice-based physical activity.


Assuntos
Exercício Físico , Meios de Transporte , Caminhada , Humanos , Colômbia , Meios de Transporte/métodos , Caminhada/estatística & dados numéricos , Impostos , Fatores Socioeconômicos , Cidades , Ciclismo/estatística & dados numéricos , Feminino , Masculino , Adulto
3.
Appl Math Model ; 121: 506-523, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37234701

RESUMO

A new contagious disease or unidentified COVID-19 variants could provoke a new collapse in the global economy. Under such conditions, companies, factories, and organizations must adopt reopening policies that allow their operations to reduce economic effects. Effective reopening policies should be designed using mathematical models that emulate infection chains through individual interactions. In contrast to other modeling approaches, agent-based schemes represent a computational paradigm used to characterize the person-to-person interactions of individuals inside a system, providing accurate simulation results. To evaluate the optimal conditions for a reopening policy, authorities and decision-makers need to conduct an extensive number of simulations manually, with a high possibility of losing information and important details. For this reason, the integration of optimization and simulation of reopening policies could automatically find the realistic scenario under which the lowest risk of infection was attained. In this paper, the metaheuristic technique of the Whale Optimization Algorithm is used to find the solution with the minimal transmission risk produced by an agent-based model that emulates a hypothetical re-opening context. Our scheme finds the optimal results of different generical activation scenarios. The experimental results indicate that our approach delivers practical knowledge and essential estimations for identifying optimal re-opening strategies with the lowest transmission risk.

4.
Plants (Basel) ; 12(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771638

RESUMO

Agricultural losses brought about by insect herbivores can be reduced by understanding the strategies that plants use against insect herbivores. The two main strategies that plants use against herbivory are resistance and tolerance. They are, however, predicted to be mutually exclusive, yet numerous populations have them both (hence a mixed defense strategy). This has been explained, among other alternatives, by the non-linear behavior of the costs and benefits of resistance and tolerance and their interaction with plants' mating system. Here, we studied how non-linearity and mating system affect the evolutionary stability of mixed defense strategies by means of agent-based model simulations. The simulations work on a novel model that was built upon previous ones. It incorporates resistance and tolerance costs and benefits, inbreeding depression, and a continuously scalable non-linearity. The factors that promoted the evolutionary stability of mixed defense strategies include a multiplicative allocation of costs and benefits of resistance and tolerance, a concave non-linearity, non-heritable selfing, and high tolerance costs. We also found new mechanisms, enabled by the mating system, that are worth considering for empirical studies. One was a double trade-off between resistance and tolerance, predicted as a consequence of costs duplication and the inducibility of tolerance, and the other was named the resistance-cost-of-selfing, a term coined by us, and was derived from the duplication of costs that homozygous individuals conveyed when a single resistance allele provided full protection.

5.
Cities ; 134: 104161, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36597474

RESUMO

Modeling experts have been continually researching the interplay of human mobility and COVID-19 transmission since the outbreak of the pandemic. They tried to address this problem and support the control of the pandemic spreading at the national or regional levels. However, these modeling approaches had little success in producing empirically verifiable results at the neighborhood level due to a lack of data and limited representation of low spatial scales in the models. To fill this gap, this research aims to present an agent-based model to simulate human mobility choices in the context of COVID-19, based on social activities of individuals in the neighborhood. We apply the VIABLE model to the decision-making process of heterogeneous agents, who populate the system's environment. The agents adapt their mobility and activities autonomously at each iteration to improve their well-being and respond to exposure risks. The study reveals significant temporal variations in mobility choices between the groups of agents with different vulnerability levels under the Covid-19 pandemic. Agents from the same group with similar economic backgrounds tend to select the same mobility patterns and activities leading to segregation at this low scale. We calibrated the model with a focus on Porto Alegre in Brazil.

6.
Risk Anal ; 43(2): 405-422, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35436005

RESUMO

Coastal flood risk is expected to increase as a result of climate change effects, such as sea level rise, and socioeconomic growth. To support policymakers in making adaptation decisions, accurate flood risk assessments that account for the influence of complex adaptation processes on the developments of risks are essential. In this study, we integrate the dynamic adaptive behavior of homeowners within a flood risk modeling framework. Focusing on building-level adaptation and flood insurance, the agent-based model (DYNAMO) is benchmarked with empirical data for New York City, USA. The model simulates the National Flood Insurance Program (NFIP) and frequently proposed reforms to evaluate their effectiveness. The model is applied to a case study of Jamaica Bay, NY. Our results indicate that risk-based premiums can improve insurance penetration rates and the affordability of insurance compared to the baseline NFIP market structure. While a premium discount for disaster risk reduction incentivizes more homeowners to invest in dry-floodproofing measures, it does not significantly improve affordability. A low interest rate loan for financing risk-mitigation investments improves the uptake and affordability of dry-floodproofing measures. The benchmark and sensitivity analyses demonstrate how the behavioral component of our model matches empirical data and provides insights into the underlying theories and choices that autonomous agents make.

7.
Heliyon ; 8(12): e12005, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478806

RESUMO

The purpose of this article consists of analyzing publications discussing the use of agent-based artificial intelligence models in sustainable agriculture research. The analysis involved bibliometric indicators and the Rstudio software with Bibliometrix library. The methodology is descriptive with a quantitative approach. Scientific databases SCOPUS and Web of Science were consulted and the PRISMA methodology was used during the selection process. This led to finding 86 publications that met the inclusion criteria. Amongst the results, United States was listed as the country with the highest production of scientific material, although France had a higher impact. Additionally, the bibliographical resources that help promote scientific development are open source. It was concluded that the agent-based model has been adopted to simulate different scenarios, which help decision-makers to formulate public policies in favor of sustainable agriculture. This optimizes the use of natural resources and reduces negative consequences for the environment, while also delivering value for the stakeholders of the agricultural system.

8.
Philos Trans A Math Phys Eng Sci ; 380(2224): 20210165, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35400182

RESUMO

Genetic machine learning (ML) algorithms to train agents in the Yard-Sale model proved very useful for finding optimal strategies that maximize their wealth. However, the main result indicates that the more significant the fraction of rational agents, the greater the inequality at the collective level. From social and economic viewpoints, this is an undesirable result since high inequality diminishes liquidity and trade. Besides, with very few exceptions, most agents end up with zero wealth, despite the inclusion of rational behaviour. To deal with this situation, here we include a taxation-redistribution mechanism in the ML algorithm. Previous results show that simple regulations can considerably reduce inequality if agents do not change their behaviour. However, when considering rational agents, different types of redistribution favour risk-averse agents, to some extent. Even so, we find that rational agents looking for optimal wealth can always arrive to an optimal risk, compatible with a particular choice of parameters, but increasing inequality. This article is part of the theme issue 'Kinetic exchange models of societies and economies'.


Assuntos
Renda , Impostos , Algoritmos , Aprendizado de Máquina , Fatores Socioeconômicos
9.
Physica A ; 584: 126367, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34658496

RESUMO

The short-term economic consequences of the critical measures employed to curb the transmission of Covid-19 are all too familiar, but the consequences of isolation and loneliness resulting from those measures on the mental well-being of the population and their ensuing long-term economic effects are largely unknown. Here we offer a stochastic agent-based model to investigate social restriction measures in a community where the feelings of loneliness of the agents dwindle when they are socializing and grow when they are alone. In addition, the intensity of those feelings, which are measured by a real variable that we term degree of loneliness, determines whether the agent will seek social contact or not. We find that decrease of the number, quality or duration of social contacts lead the community to enter a regime of burnout in which the degree of loneliness diverges, although the number of lonely agents at a given moment amounts to only a fraction of the total population. This regime of mental breakdown is separated from the healthy regime, where the degree of loneliness is finite, by a continuous phase transition. We show that the community dynamics is described extremely well by a simple mean-field theory so our conclusions can be easily verified for different scenarios and parameter settings. The appearance of the burnout regime illustrates neatly the side effects of social distancing, which give to many of us the choice between physical infection and mental breakdown.

10.
Front Bioeng Biotechnol ; 9: 660148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34041231

RESUMO

Metaheuristics (MH) are Artificial Intelligence procedures that frequently rely on evolution. MH approximate difficult problem solutions, but are computationally costly as they explore large solution spaces. This work pursues to lay the foundations of general mappings for implementing MH using Synthetic Biology constructs in cell colonies. Two advantages of this approach are: harnessing large scale parallelism capability of cell colonies and, using existing cell processes to implement basic dynamics defined in computational versions. We propose a framework that maps MH elements to synthetic circuits in growing cell colonies to replicate MH behavior in cell colonies. Cell-cell communication mechanisms such as quorum sensing (QS), bacterial conjugation, and environmental signals map to evolution operators in MH techniques to adapt to growing colonies. As a proof-of-concept, we implemented the workflow associated to the framework: automated MH simulation generators for the gro simulator and two classes of algorithms (Simple Genetic Algorithms and Simulated Annealing) encoded as synthetic circuits. Implementation tests show that synthetic counterparts mimicking MH are automatically produced, but also that cell colony parallelism speeds up the execution in terms of generations. Furthermore, we show an example of how our framework is extended by implementing a different computational model: The Cellular Automaton.

11.
Parasit Vectors ; 14(1): 231, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933151

RESUMO

BACKGROUND: Cattle fever ticks (CFT), Rhipicephalus (Boophilus) annulatus and R. (B.) microplus, are vectors of microbes causing bovine babesiosis and pose a threat to the economic viability of the US livestock industry. Efforts by the Cattle Fever Tick Eradication Program (CFTEP) along the US-Mexico border in south Texas are complicated by the involvement of alternate hosts, including white-tailed deer (Odocoileus virginianus) and nilgai (Boselaphus tragocamelus). METHODS: In the present study, we use a spatially explicit, individual-based model to explore the potential effects of host species composition and host habitat use patterns on southern cattle fever ticks (SCFT, R. (B.) microplus) infestation dynamics and efficacy of eradication schemes. RESULTS: In simulations without eradication efforts, mean off-host larval densities were much higher when cattle were present than when only white-tailed deer and nilgai were present. Densities in mesquite and meadows were slightly higher, and densities in mixed brush were much lower, than landscape-level densities in each of these scenarios. In eradication simulations, reductions in mean off-host larval densities at the landscape level were much smaller when acaricide was applied to cattle only, or to cattle and white-tailed deer, than when applied to cattle and nilgai. Relative density reductions in mesquite, mixed brush, and meadows depended on host habitat use preferences. Shifting nilgai habitat use preferences increasingly toward mixed brush and away from mesquite did not change mean off-host larval tick densities noticeably at the landscape level. However, mean densities were increased markedly in mesquite and decreased markedly in mixed brush, while no noticeable change in density was observed in meadows. CONCLUSIONS: Our results suggest that continued integration of field data into spatially explicit, individual-based models will facilitate the development of novel eradication strategies and will allow near-real-time infestation forecasts as an aid in anticipating and preventing wildlife-mediated impacts on SCFT eradication efforts.


Assuntos
Dinâmica Populacional/estatística & dados numéricos , Rhipicephalus , Infestações por Carrapato/veterinária , Anaplasmose/prevenção & controle , Animais , Animais Selvagens/parasitologia , Antílopes/parasitologia , Vetores Artrópodes , Babesiose/prevenção & controle , Bovinos , Doenças dos Bovinos/prevenção & controle , Simulação por Computador/estatística & dados numéricos , Cervos/parasitologia , Reservatórios de Doenças/veterinária , Interações Hospedeiro-Parasita , Gado/parasitologia , México , Texas , Controle de Ácaros e Carrapatos/métodos
12.
J Comput Chem ; 41(22): 1965-1972, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32597515

RESUMO

In this study, we revisited the Ziff-Gulari-Barshad (ZGB) model in order to study the behavior of its phase diagram when two well-known random networks play the role of the catalytic surfaces: the random geometric graph and the Erdös-Rényi network. The connectivity and, therefore, the average number of neighbors of the nodes of these networks can vary according to their control parameters, the neighborhood radius α, and the linking probability p, respectively. In addition, the catalytic reactions of the ZGB model are governed by the parameter y, the adsorption rate of carbon monoxide molecules on the catalytic surface. So, to study the phase diagrams of the model on both random networks, we carried out extensive steady-state Monte Carlo simulations in the space parameters (y, α) and (y, p) and showed that the continuous phase transition is greatly affected by the topological features of the networks while the discontinuous one remains present in the diagram throughout the interval of study.

13.
Acta Trop ; 207: 105452, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32302688

RESUMO

Ross-Macdonald models are the building blocks of most vector-borne disease models. Even for the same disease, different authors use different model formulations, but a study of the dynamical consequences of assuming different hypotheses is missing. In this work we present different formulations of the basic Ross-Macdonald model together with a careful discussion of the assumptions behind each model. The most general model presented is an agent based model for which arbitrary distributions for latency and infectious periods for both, host and vectors, is considered. At population level we also developed a deterministic Volterra integral equations model for which also arbitrary distributions in the waiting times are included. We compare the model solutions using different distributions for the infectious and latency periods using statistics, like the epidemic peak, or epidemic final size, to characterize the epidemic curves. The basic reproduction number (R0) for each formulation is computed and compared with empirical estimations obtained with the agent based models. The importance of considering realistic distributions for the latent and infectious periods is highlighted and discussed. We also show that seasonality is a key driver of vector-borne disease dynamics shaping the epidemic curve and its duration.


Assuntos
Doenças Transmitidas por Vetores/etiologia , Animais , Número Básico de Reprodução , Epidemias , Humanos , Modelos Biológicos , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/transmissão
14.
J Environ Manage ; 241: 407-417, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31030122

RESUMO

Urban adaptation to climate change is likely to emerge from the responses of residents, authorities, and infrastructure providers to the impact of flooding, water scarcity, and other climate-related hazards. These responses are, in part, modulated by political relationships under cultural norms that dominate the institutional and collective decisions of public and private actors. The legacy of these decisions, which are often associated with investment in hard and soft infrastructure, has lasting consequences that influence current and future vulnerabilities. Making those decisions visible, and tractable is, therefore, an urgent research and political challenge in vulnerability assessments. In this work, we present a modeling framework to explore scenarios of institutional decision-making and socio-political processes and the resultant effects on spatial patterns of vulnerability. The approach entails using multi-criteria decision analysis, agent-based models, and geographic information simulation. The approach allows for the exploration of uncertainties, spatial patterns, thresholds, and the sensitivities of vulnerability outcomes to different policy scenarios. Here, we present the operationalization of the framework through an intentionally simplified model example of the governance of water in Mexico City. We discuss results from this example as part of a larger effort to empirically implement the framework to explore sociohydrological risk patterns and trade-offs of vulnerability in real urban landscapes.


Assuntos
Mudança Climática , Inundações , Cidades , Tomada de Decisões , México
15.
Spora ; 5: 1-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793094

RESUMO

Chronic bladder pain evokes asymmetric behavior in neurons across the left and right hemispheres of the amygdala. An agent-based computational model was created to simulate the firing of neurons over time and in response to painful bladder stimulation. Each agent represents one neuron and is characterized by its location in the amygdala and response type (excited or inhibited). At each time step, the firing rates (Hz) of all neurons are stochastically updated from probability distributions estimated from data collected in laboratory experiments. A damage accumulation model tracks the damage accrued by neurons during long-term, painful bladder stimulation. Emergent model output uses neural activity to measure temporal changes in pain attributed to bladder stimulation. Simulations demonstrate the model's ability to capture acute and chronic pain and its potential to predict changes in pain similar to those observed in the lab. Asymmetric neural activity during the progression of chronic pain is examined using model output and a sensitivity analysis.

16.
Acta Trop ; 197: 104909, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30703339

RESUMO

BACKGROUND: Despite relatively successful control campaigns, malaria remains a relevant public health problem in the Peruvian Amazon. Several studies suggest that malaria persistence in the area can be connected with a high prevalence of asymptomatic infections, which were subsequently shown to be connected with work-related exposure in areas of hyperendemic transmission. In this study, we tested the hypothesis that the infection reservoir represented by asymptomatic carriers in the northern Peruvian Amazon, combined with circular human movement to and from hyperendemic working areas, can capture the observed hypoendemic malaria transmission. METHODS: We designed a set of agent-based models that represent local-scale malaria transmission in a typical riverine community in the northern Peruvian Amazon. The models include asymptomatic individuals as well as a full representation of human movements within the community and between the community and external hyperendemic working places. Several theoretical scenarios are explored to verify if and how malaria clinical immunity prevalence and human work-related movements influence the malaria morbidity registered in the community. RESULTS: Agent-based simulations suggest that malaria incidence observed through passive case detection can be reproduced as exclusively generated by the asymptomatic infection reservoir. Scenarios analysis also show that, even if asymptomatic infections are completely eliminated, human movements to and from hyperendemic working areas generate a flow of imported cases that is enough to permit the persistence of transmission in the community. Simulation results were verified over a wide range of clinical immunity prevalence values and over a wide range of percentages of people working in remote hyperendemic areas. This context of unstable malaria transmission is observed to be vulnerable to severe outbreaks. CONCLUSIONS: Asymptomatic malaria infection and occupational circular human movement to hyperendemic transmission areas are designated by agent-based models as possible exclusive causes of residual hypoendemic malaria transmission observed in the Peruvian Amazon. Control strategies are proposed to decrease asymptomatic infection prevalence and to block transmission from asymptomatic individuals to the malaria susceptible population.


Assuntos
Infecções Assintomáticas/epidemiologia , Reservatórios de Doenças/parasitologia , Malária/transmissão , Doenças Profissionais/epidemiologia , Migrantes , Humanos , Incidência , Malária/epidemiologia , Modelos Biológicos , Doenças Profissionais/parasitologia , Peru/epidemiologia , Plasmodium falciparum , Prevalência
17.
Math Models Methods Appl Sci ; 28(1): 61-93, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29353950

RESUMO

Cancer results from a complex interplay of different biological, chemical, and physical phenomena that span a wide range of time and length scales. Computational modeling may help to unfold the role of multiple evolving factors that exist and interact in the tumor microenvironment. Understanding these complex multiscale interactions is a crucial step towards predicting cancer growth and in developing effective therapies. We integrate different modeling approaches in a multiscale, avascular, hybrid tumor growth model encompassing tissue, cell, and sub-cell scales. At the tissue level, we consider the dispersion of nutrients and growth factors in the tumor microenvironment, which are modeled through reaction-diffusion equations. At the cell level, we use an agent based model (ABM) to describe normal and tumor cell dynamics, with normal cells kept in homeostasis and cancer cells differentiated apoptotic, hypoxic, and necrotic states. Cell movement is driven by the balance of a variety of forces according to Newton's second law, including those related to growth-induced stresses. Phenotypic transitions are defined by specific rule of behaviors that depend on microenvironment stimuli. We integrate in each cell/agent a branch of the epidermal growth factor receptor (EGFR) pathway. This pathway is modeled by a system of coupled nonlinear differential equations involving the mass laws of 20 molecules. The rates of change in the concentration of some key molecules trigger proliferation or migration advantage response. The bridge between cell and tissue scales is built through the reaction and source terms of the partial differential equations. Our hybrid model is built in a modular way, enabling the investigation of the role of different mechanisms at multiple scales on tumor progression. This strategy allows representating both the collective behavior due to cell assembly as well as microscopic intracellular phenomena described by signal transduction pathways. Here, we investigate the impact of some mechanisms associated with sustained proliferation on cancer progression. Specifically, we focus on the intracellular proliferation/migration-advantage-response driven by the EGFR pathway and on proliferation inhibition due to accumulation of growth-induced stresses. Simulations demonstrate that the model can adequately describe some complex mechanisms of tumor dynamics, including growth arrest in avascular tumors. Both the sub-cell model and growth-induced stresses give rise to heterogeneity in the tumor expansion and a rich variety of tumor behaviors.

18.
Malar J ; 16(1): 373, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915892

RESUMO

BACKGROUND: Evidence of changing in biting and resting behaviour of the main malaria vectors has been mounting up in recent years as a result of selective pressure by the widespread and long-term use of insecticide-treated bed nets (ITNs), and indoor residual spraying. The impact of resistance behaviour on malaria intervention efficacy has important implications for the epidemiology and malaria control programmes. In this context, a theoretical framework is presented to understand the mechanisms determining the evolution of feeding behaviour under the pressure of use of ITNs. METHODS: An agent-based stochastic model simulates the impact of insecticide-treated bed nets on mosquito fitness by reducing the biting rates, as well as increasing mortality rates. The model also incorporates a heritability function that provides the necessary genetic plasticity upon which natural selection would act to maximize the fitness under the pressure of the control strategy. RESULTS: The asymptotic equilibrium distribution of mosquito population versus biting time is shown for several daily uses of ITNs, and the expected disruptive selection on this mosquito trait is observed in the simulations. The relative fitness of strains that bite at much earlier time with respect to the wild strains, when a threshold of about 50% of ITNs coverage highlights the hypothesis of a behaviour selection. A sensitivity analysis has shown that the top three parameters that play a dominant role on the mosquito fitness are the proportion of individuals using bed nets and its effectiveness, the impact of bed nets on mosquito oviposition, and the mosquito genetic plasticity related to changing in biting time. CONCLUSION: By taking the evolutionary aspect into account, the model was able to show that the long-term use of ITNs, although representing an undisputed success in reducing malaria incidence and mortality in many affected areas, is not free of undesirable side effects. From the evolutionary point of view of the parasite virulence, it should be expected that plasmodium parasites would be under pressure to reduce their virulence. This speculative hypothesis can eventually be demonstrated in the medium to long-term use of ITNs.


Assuntos
Anopheles/fisiologia , Mordeduras e Picadas de Insetos/epidemiologia , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Controle de Mosquitos , Animais , Comportamento Alimentar , Feminino , Modelos Biológicos , Processos Estocásticos , Fatores de Tempo
19.
Int J Behav Nutr Phys Act ; 14(1): 111, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830527

RESUMO

Despite the increasing body of evidences on the factors influencing leisure-time physical activity, our understanding of the mechanisms and interactions that lead to the formation and evolution of population patterns is still limited. Moreover, most frameworks in this field fail to capture dynamic processes. Our aim was to create a dynamic conceptual model depicting the interaction between key psychological attributes of individuals and main aspects of the built and social environments in which they live. This conceptual model will inform and support the development of an agent-based model aimed to explore how population patterns of LTPA in adults may emerge from the dynamic interplay between psychological traits and built and social environments. We integrated existing theories and models as well as available empirical data (both from literature reviews), and expert opinions (based on a systematic expert assessment of an intermediary version of the model). The model explicitly presents intention as the proximal determinant of leisure-time physical activity, a relationship dynamically moderated by the built environment (access, quality, and available activities) - with the strength of the moderation varying as a function of the person's intention- and influenced both by the social environment (proximal network's and community's behavior) and the person's behavior. Our conceptual model is well supported by evidence and experts' opinions and will inform the design of our agent-based model, as well as data collection and analysis of future investigations on population patterns of leisure-time physical activity among adults.


Assuntos
Atividades de Lazer/psicologia , Meio Social , Análise de Sistemas , Adulto , Comportamento , Exercício Físico , Humanos , Atividade Motora
20.
Proc Natl Acad Sci U S A ; 113(51): 14536-14543, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27791072

RESUMO

Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human-environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social-ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human-environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human-natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social-ecological sustainability of the Galapagos Islands.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Dinâmica Populacional , Adolescente , Adulto , Idoso , Animais , Ecologia , Equador , Feminino , Pesqueiros , Nível de Saúde , Humanos , Ilhas , Masculino , Pessoa de Meia-Idade , Apoio Social , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA