Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 695
Filtrar
1.
Heliyon ; 10(14): e34294, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092246

RESUMO

This investigation presents a critical analysis of mouthguard production, focusing on the evaluation of conventional vs additive manufacturing methods, the materials involved, and aspects such as their failure and prevention. It also summarizes the current trends, perspectives, and the main limitations. It is shown that some of the shortcomings can be solved by implementing additive manufacturing technologies, which are systematically reviewed in this research. Due to the specific materials used to produce mouthguards, there are certain additive manufacturing technologies that dominate and a wide variety of raw materials. The costs vary depending on the technology.

2.
Dent Mater ; 40(10): 1685-1691, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39095245

RESUMO

OBJECTIVE: To formulate an experimental methacrylate-based photo-polymerizable resin for 3D printing with ytterbium trifluoride as filler and to evaluate the mechanical, physicochemical, and biological properties. METHODS: Resin matrix was formulated with 60 wt% UDMA, 40 wt% TEGDMA, 1 wt% TPO, and 0.01 wt% BHT. Ytterbium Trifluoride was added in concentrations of 1 (G1 %), 2 (G2 %), 3 (G3 %), 4 (G4 %), and 5 (G5 %) wt%. One group remained without filler addition as control (GC). The samples were designed in 3D builder software and printed using a UV-DLP 3D printer. The samples were ultrasonicated with isopropanol and UV cured for 60 min. The resins were tested for degree of conversion (DC), flexural strength, Knoop microhardness, softening in solvent, radiopacity, colorimetric analysis, and cytotoxicity (MTT and SRB). RESULTS: Post-polymerization increased the degree of conversion of all groups (p < 0.05). G2 % showed the highest DC after post-polymerization. G2 % showed no differences in flexural strength from the G1 % and GC (p > 0.05). All groups showed a hardness reduction after solvent immersion. No statistical difference was found in radiopacity, softening in solvent (ΔKHN%), colorimetric spectrophotometry, and cytotoxicity (MTT) (p > 0.05). G1 % showed reduced cell viability for SRB assay (p < 0.05). SIGNIFICANCE: It was possible to produce an experimental photo-polymerizable 3D printable resin with the addition of 2 % ytterbium trifluoride as filler without compromising the mechanical, physicochemical, and biological properties, comparable to the current provisional materials.


Assuntos
Dureza , Teste de Materiais , Metacrilatos , Impressão Tridimensional , Metacrilatos/química , Resistência à Flexão , Polimerização , Polietilenoglicóis/química , Resinas Compostas/química , Ácidos Polimetacrílicos/química , Poliuretanos/química , Colorimetria , Propriedades de Superfície
3.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065309

RESUMO

Additive manufacturing (AM), commonly known as 3D printing, allows for the manufacturing of complex systems that are not possible using traditional manufacturing methods. Nevertheless, some disadvantages are attributed to AM technologies. One of the most often referred to is the defects of the produced components, particularly the porosity. One approach to solving this problem is to consider it as a non-problem, i.e., taking advantage of the defects. Commercially, LAY-FOMM®60 polymer was successfully used in AM through a material extrusion process. This filament is a blend of two polymers, one of them soluble in water, allowing, after its removal from the printed components, the increase in porosity. The defects produced were exploited to evaluate the metallic ion removal capacity of manufactured components using non-potable tap water. Two experimental setups, continuous and ultrasound-assisted methods, were compared, concerning their water cleaning capacity. Results revealed that continuous setup presented the highest metallic ion removal capacity (>80%) for the following three studied metallic ions: iron, copper, and zinc. High water swelling capacity (~80%) and the increase in porosity of 3D-printed parts played a significant role in the ion sorption capacity. The developed strategy could be considered a custom and affordable alternative to designing complex filtration/separation systems for environmental and wastewater treatment applications.

4.
Ecotoxicology ; 33(7): 786-800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997499

RESUMO

Sea urchin species are ecologically important in the Gulf of California and are becoming popular as a local fishery due to their commercial value. The most abundant species are Echinometra vanbrunti, Eucidaris thouarsii, and Tripneustes depressus. The objective of this study was to evaluate cadmium, lead, copper, zinc, and iron concentrations, as well as stable isotope values in these sea urchin species in the Santa Rosalia mining area (STR), in three sites: Punta Gorda, Punta el Aterrizaje, and Punta Salina. The highest Fe concentration (100.2 mg kg-1) was found in E. vanbrunti, while the highest concentrations of Pb (15.1 mg kg-1), Cu (14.5 mg kg-1), and Zn (347.7 mg kg-1) were recorded in E. thouarsii, and the highest Cd concentration (10.8 mg kg-1) was found in T. depressus. The main health risk of trace metal pollution in STR may be caused by Cd and Pb. δ15N and δ13C values were higher in E. thouarsii and T. depressus, respectively; E. thouarsii has the highest trophic position. Specimen size was not related to metal concentrations, but a positive relationship was observed between specimen size and isotopic values in T. depressus. The three species showed different bioaccumulation patterns for the metals analyzed. Additionally, collection sites and seasons play an important role in the variability of metal concentration.


Assuntos
Monitoramento Ambiental , Ouriços-do-Mar , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Metais Pesados/análise , Cadeia Alimentar , México
5.
Poult Sci ; 103(10): 104041, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067117

RESUMO

The objective of the present study was to evaluate a blend of functional oils (FO) composed of copaiba and garlic essential oils, pepper oleoresin and cashew nut liquid to mitigate the effects of heat stress on productivity, egg quality, organ morphology of the gastrointestinal tract, serum biochemical profile, nutrient metabolism and body temperature of Japanese quail. A completely randomized design was used in a 3 × 2 factorial scheme (without additive; 300 and 500 mg FO/kg of feed x birds raised in a thermal comfort (TC) and heat stress (HS) environment), with 6 replicates of 8 birds per plot. The birds under HS had lower feed intake (P = 0.0000), egg mass (P = 0.0000), laying rate (P = 0.0000) and higher percentage of infertile non-commercial eggs (P = 0.0004), lower head temperature amplitude (P = 0.0000) and higher average of body temperature (P = 0.0312). HS worsened the external and internal quality of the eggs. Birds kept in HS showed higher values of cholesterol (P = 0.0000) and glutamic-pyruvic transaminase (P = 0.0272). The use of 300 and 500 g FO/ton of feed improved the feed conversion (P = 0.0000) and egg mass (P = 0.0000) of the quail bred under HS, respectively, by 8.4 and 7.2% and increased the relative weight of liver (P = 0.0064) and pancreas (P = 0.0492). The use of such additives also provided a higher % of yolk (P = 0.0018) and reduced the percentage of albumen (P = 0.0029) of the eggs produced in TC, in addition to reducing the amplitude of head temperature (P = 0.0484) of birds bred under HS. The breeding of Japanese quail under HS results in negative impacts on the production, physiological and qualitative aspects of the eggs. The use of 300 g/ton of FO in the diet of Japanese quail leads to improvements in feed conversion, increased liver capacity in nutritional metabolism and results in eggs with a higher proportion of yolks, being, therefore, an alternative for feeding quail in a hot climate.


Assuntos
Ração Animal , Coturnix , Dieta , Óleos de Plantas , Animais , Coturnix/fisiologia , Ração Animal/análise , Dieta/veterinária , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Feminino , Distribuição Aleatória , Suplementos Nutricionais/análise , Resposta ao Choque Térmico/efeitos dos fármacos , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Anacardium/química , Temperatura Alta/efeitos adversos , Alho/química , Transtornos de Estresse por Calor/veterinária
6.
Poult Sci ; 103(10): 104022, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068694

RESUMO

The maternal diet and egg incubation temperature are some of the factors that can influence the embryonic development and performance of the newly chicks at 15 d of age. This study evaluated the effects of adding a blend of organic acids, essential oils, curcumin, tannins, vitamin E, and zinc microencapsulated in to the diet of female quails (Coturnix coturnix japonica) on their productive, reproductive performance and redox parameters of their eggs and the interaction of maternal diet × incubation temperature on embryo (E16 and E18) and chicks development. At 98 d of age, 64 female quails with a mean body weight of 150 g ± 0.5 were distributed into two treatments: a Basal diet or a diet supplemented with blend (Sannimix). The eggs from each female were incubated at 37.5°C (Control) and 38.5°C (High Temperature) throughout the incubation period. After hatching, chicks were distributed in a 2 (maternal diet) × 2 (incubation temperature) factorial design. Female quails supplemented with Sannimix showed better productive and reproductive performance and produced higher-quality embryos. Their offspring had greater weight at hatch and at 15 d of age. The eggs and offspring of supplemented with Sannimix female quails showed better oxidative stability. At E16 and E18, High Temperature increased yolk sac utilization and gene expression of the growth hormone receptor (GHR). At E16, embryos from supplemented with Sannimix female quail had higher expression of insulin-like growth factor type I (IGFI) and heat shock protein 70 kDa genes. At 15 d of age, highest expression of the GHR and IGFI genes was observed in chicks from female quails fed the Sannimix diet, regardless of incubation temperature. Regarding the maternal diet × incubation temperature an improved result was observed for chicks from female quails fed with Sannimix even when eggs are exposed to High Temperature during the incubation. The supplementation of quail diets with blend Sannimix improves productive and reproductive performance, egg quality and their embryos, as well as their offspring quality.


Assuntos
Ração Animal , Coturnix , Curcumina , Dieta , Suplementos Nutricionais , Óleos Voláteis , Vitamina E , Zinco , Animais , Ração Animal/análise , Dieta/veterinária , Feminino , Suplementos Nutricionais/análise , Coturnix/crescimento & desenvolvimento , Óleos Voláteis/administração & dosagem , Vitamina E/administração & dosagem , Zinco/administração & dosagem , Zinco/metabolismo , Curcumina/administração & dosagem , Curcumina/farmacologia , Taninos/administração & dosagem , Temperatura , Reprodução/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos
7.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000613

RESUMO

Vegetable fibers are increasingly used in biocomposites, but there is a need for further development in utilizing by-products like cocoa husks. Three-dimensional printing, through Fused Filament Fabrication (FFF), is advancing rapidly and may be of great interest for applying biocomposite materials. This study focuses on developing innovative and fully biodegradable filaments for the FFF process. PLA filaments were prepared using cellulose fibers derived from cocoa husks (5% mass ratio). One set of filaments incorporated fibers from untreated husks (UCFFs), while another set utilized fibers from chemically treated husks (TCFFs). The fabricated materials were analyzed using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) techniques, and they were also tested for tensile strength. ANOVA reveals that both UCFFs and TCFFs significantly predict tensile strength, with the UCFFs demonstrating an impressive R2 value of 0.9981. The optimal tensile strength for the filament test specimens was 16.05 MPa for TCFF8 and 13.58 MPa for UCFF8, utilizing the same printing parameters: 70% infill and a layer thickness of 0.10 mm. Additionally, there was an 18% improvement in the tensile strength of the printed specimens using the filaments filled with chemically treated cocoa husk fibers compared to the filaments with untreated fibers.

8.
Small ; : e2402419, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004887

RESUMO

This study focuses on designing and evaluating scaffolds with essential properties for bone regeneration, such as biocompatibility, macroporous geometry, mechanical strength, and magnetic responsiveness. The scaffolds are made using 3D printing with acrylic resin and iron oxides synthesized through solution combustion. Utilizing triply periodic minimal surfaces (TPMS) geometry and mask stereolithography (MSLA) printing, the scaffolds achieve precise geometrical features. The mechanical properties are enhanced through resin curing, and magnetite particles from synthesized nanoparticles and alluvial magnetite are added for magnetic properties. The scaffolds show a balance between stiffness, porosity, and magnetic responsiveness, with maximum compression strength between 4.8 and 9.2 MPa and Young's modulus between 58 and 174 MPa. Magnetic properties such as magnetic coercivity, remanence, and saturation are measured, with the best results from scaffolds containing synthetic iron oxides at 1% weight. The viscosity of the mixtures used for printing is between 350 and 380 mPas, and contact angles between 90° and 110° are achieved. Biocompatibility tests indicate the potential for clinical trials, though further research is needed to understand the impact of magnetic properties on cellular interactions and optimize scaffold design for specific applications. This integrated approach offers a promising avenue for the development of advanced materials capable of promoting enhanced bone regeneration.

9.
Biomed Mater ; 19(5)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteoblastos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Óxido de Zinco/química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Teste de Materiais , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Humanos , Animais , Fosfatase Alcalina/metabolismo , Módulo de Elasticidade , Porosidade , Propriedades de Superfície
10.
Mar Pollut Bull ; 205: 116598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885576

RESUMO

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.


Assuntos
Golfinhos , Monitoramento Ambiental , Ésteres , Metaboloma , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Brasil , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Ésteres/análise , Ésteres/metabolismo , Golfinhos/metabolismo , Tecido Adiposo/metabolismo , Dietilexilftalato/metabolismo , Plastificantes , Disruptores Endócrinos/análise , Masculino , Feminino , Dibutilftalato
11.
J Dent ; 147: 105089, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38772449

RESUMO

OBJECTIVE: The purpose of this systematic review and meta-analysis was to evaluate the accuracy (trueness and precision), marginal and internal adaptation, and margin quality of zirconia crowns made by additive manufacturing compared to subtractive manufacturing technology. METHODS: The investigation adhered to the PRISMA-ScR guidelines for systematic reviews and was registered at the Prospero database (n°CRD42023452927). Four electronic databases, including PubMed, Scopus, Embase, and Web of Science and manual search was conducted to find relevant studies published until September 2023. In vitro studies that assessed the trueness and precision, marginal and internal adaptation, and margin quality of printed crowns compared to milled ones were included. Studies on crowns over implants, pontics, temporary restorations, laminates, or exclusively experimental materials were excluded. RESULTS: A total of 9 studies were included in the descriptive reporting and 7 for meta-analysis. The global meta-analysis of the trueness (P<0.74,I2=90 %) and the margin quality (P<0.61,I2=0 %) indicated no significant difference between the root mean square of printed and milled zirconia crowns. The subgroup analysis for the printing system showed a significant effect (P<0.01). The meta-analysis of the crown areas indicated no significant difference in most of the areas, except for the marginal (favoring milled crowns) and axial (favoring printed crowns) areas. For precision and adaptation, both methods showed a clinically acceptable level. CONCLUSIONS: Additive manufacturing technology produces crowns with trueness and margin quality comparable to subtractive manufacturing. Both techniques have demonstrated the ability to produce crowns with precision levels, internal discrepancy, and marginal fit within clinically acceptable limits. CLINICAL SIGNIFICANCE: 3D printing emerges as a promising and potentially applicable alternative method for manufacturing zirconia crowns, as it shows trueness and margin quality comparable to restorations produced by the subtractive method.


Assuntos
Coroas , Adaptação Marginal Dentária , Planejamento de Prótese Dentária , Impressão Tridimensional , Zircônio , Zircônio/química , Humanos , Planejamento de Prótese Dentária/métodos , Desenho Assistido por Computador , Materiais Dentários/química
12.
Polymers (Basel) ; 16(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732730

RESUMO

Additive manufacturing, particularly Stereolithography (SLA), has gained widespread attention thanks to its ability to produce intricate parts with high precision and customization capacity. Nevertheless, the inherent low mechanical properties of SLA-printed parts limit their use in high-value applications. One approach to enhance these properties involves the incorporation of nanomaterials, with graphene oxide (GO) being a widely studied option. However, the characterization of SLA-printed GO nanocomposites under various stress loadings remains underexplored in the literature, despite being essential for evaluating their mechanical performance in applications. This study aimed to address this gap by synthesizing GO and incorporating it into a commercial SLA resin at different concentrations (0.2, 0.5, and 1 wt.%). Printed specimens were subjected to pure tension, combined stresses, and pure shear stress modes for comprehensive mechanical characterization. Additionally, failure criteria were provided using the Drucker--Prager model.

13.
Trop Anim Health Prod ; 56(5): 176, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795263

RESUMO

The impact of heat stress on dairy cattle leads to significant economic losses and a negative impact on the welfare of the animals. The objective of this research was to evaluate the effect of the nutritional additive (Thermoplus®) in dairy cows under postpartum heat stress conditions, and its effects on the metabolic profile, production and quality of milk. Eighteen lactating Holstein cows (8 multiparous and ten primiparous), in a free-stall system, with a mean body condition score (BCS) of 3.14 ± 0.05, live weight of 624.55 ± 18, 61 kg, with initial mean days in milk (DIM) of 90 ± 10.11, were selected. The animals were grouped into a control (CG, n = 9) and a treatment (TG, n = 9). Both groups underwent 14 days of diet adaptation, the TG received the basal diet supplemented with 50 g of the additive, once a day, individually, while the control group received only the total diet. Data collection of metabolic and productive parameters were evaluated on days -14 (before adaptation), 1 (after the diet adaptation period), 16, 30, and 44. Milk, blood, and body condition score (BCS) were collected once a day, and heart rate, respiratory rate, and rectal temperature were collected twice a day. Serum concentrations of albumin, calcium, magnesium, glucose, gamma-glutamyl transferase (GGT), beta-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFAs), and paraoxonase-1 (PON-1) were evaluated. In the milk, the percentage of fat, protein, lactose, and total solids were determined in each sampling. Milk yield was measured daily. Humidity and ambient temperature values were collected on the days of the collection every 30 min, from 5:30 am to 5:00 pm, to calculate the temperature-humidity index (THI). Statistical analyzes were performed using the SAS software (version 9.3, SAS Institute Inc., Cary, NC, USA). The THI ranged from 62.22 to 79.47. Our findings showed that when the THI was greater than 72, the animals in the TG were able to maintain milk yield (Odds ratio (OD) = -0.0577,), and the animals in the CG had a greater chance of reducing it (OD = -0.2301). Multiparous cows in the TG had higher milk yield than CG (32.57 ± 0.34 vs 30.50 ± 0.36 kg per day; P = 0.0078) and lower SCC (34.110 ± 6,940 vs 665.50 ± 214.41 cells per ml; P = 0.03), with the same percentages of total solids (P > 0.05). In multiparous metabolic markers, TG when compared CG had higher albumin concentrations (2.50 ± 0.07 vs 2.12 ± 0.07 g/dl; < 0.001), equal PON-1 (P > 0.05), and higher BHBA levels (0.49 ± 0.03 vs 0.39 ± 0.04 mmol/l). Primiparous from the CG had higher concentrations of NEFA (0.18 ± 0.02 mmol/l) than multiparous from the same group (0.09 ± 0.02 mmol/l) P = 0.0265. The use of the plant polyphenol extract in postpartum Holstein cows challenged by heat stress had beneficial effects on the production and health of the mammary gland in multiparous cows without decreasing milk solids. The non-reduction of the activities of the acute phase proteins indicates an immunomodulatory and inflammatory-reducing effect of the product used.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Lactação , Leite , Polifenóis , Animais , Bovinos/fisiologia , Feminino , Lactação/efeitos dos fármacos , Suplementos Nutricionais/análise , Leite/química , Ração Animal/análise , Dieta/veterinária , Polifenóis/administração & dosagem , Polifenóis/farmacologia , Polifenóis/análise , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta
14.
Trop Anim Health Prod ; 56(4): 160, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730050

RESUMO

The rearing of calves is an essential activity of a dairy system, as it impacts the future production of these animals. This study aims to evaluate the incidence of diarrhea, performance, and blood parameters of suckling calves that received mineral-vitamin supplementation in milk plus virginiamycin that was offered in milk (via the abomasum) or by esophageal tube (via the rumen). Twenty-seven calves were used, from the first week to 60 days of age, submitted to the following treatments: CONTROL, without supplementation; MILK, supplementation of 20 g of a mineral-vitamin complex with 100 mg of virginiamycin, diluted in milk; RUMEN, supplementation of 20 g of a mineral-vitamin complex diluted in milk and 100 mg of virginiamycin in gelatin capsules via an esophageal applicator. MILK and RUMEN calves had lower fecal consistency scoring, fewer days with scores 2 and 3 throughout the experimental period, and lower spending on medication compared to the CONTROL animals. Supplemented calves had higher fat and protein intake and reached feed intake of 600 g earlier than CONTROL animals, but did not differ in performance and hematological parameters. Supplementation with virginiamycin and vitamin-mineral complex for suckling calves reduced the incidence and days of diarrhea, and reduced medication costs, with no difference in performance, but the supplemented animals had higher initial protein and fat intake and reached targeted feed intake earlier to begin the weaning process.


Assuntos
Ração Animal , Doenças dos Bovinos , Diarreia , Suplementos Nutricionais , Virginiamicina , Animais , Bovinos , Suplementos Nutricionais/análise , Diarreia/veterinária , Diarreia/prevenção & controle , Diarreia/epidemiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Incidência , Ração Animal/análise , Virginiamicina/administração & dosagem , Virginiamicina/farmacologia , Vitaminas/administração & dosagem , Animais Lactentes , Masculino , Feminino , Minerais/administração & dosagem , Minerais/análise , Leite/química , Dieta/veterinária
15.
Saudi Dent J ; 36(5): 733-739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766297

RESUMO

Introduction: Post-processing (PP) is performed to improve the surface, which can favor microbial adhesion and consequent pathological manifestations that impair the indication of polylactic acid (PLA) obtained by fused filament fabrication (FFF) for biomedical applications. This aims to evaluate the influence of chemical, thermal, and mechanical PP on the adhesion of Streptococcus mutants and Candida albicans, roughness, and wettability of the PLA obtained by FFF with and without thermal aging. Methods: The specimens were designed in the 3D modeling program and printed. The chemical PP was performed by immersion in chloroform, the thermal by the annealing method, and the mechanical by polishing. Thermal aging was performed by alternating the temperature from 5 °C to 55 °C with 5000 cycles. Colony-forming unit (CFU/mL) counting was performed on dual-species biofilm of C. albicans and S. mutans. Roughness was analyzed by rugosimeter and wettability by the sessile drop technique. Data were verified for normality using the Shapiro-Wilk test, two-way ANOVA (α = 0.05) applied for CFU and wettability, and Kruskal-Wallis (α = 0.05) for roughness. Results: Chemical, thermal, and mechanical PP methods showed no influence on CFU/mL of C. albicans (p = 0.296) and S. mutans (p = 0.055). Thermal aging did not influence microbial adhesion. Chemical PP had lower roughness, which had increased after aging. Wettability of the mechanical PP was lower. Conclusions: Post-processing techniques, do not present an influence on the adhesion of S. mutans and C. albicans in PLA obtained by FFF, chemical PP reduced roughness, and mechanical reduced wettability. Thermal aging did not alter the microbial adhesion and altered the roughness and wettability.

16.
Front Plant Sci ; 15: 1293307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726298

RESUMO

Sweet corn breeding programs, like field corn, focus on the development of elite inbred lines to produce commercial hybrids. For this reason, genomic selection models can help the in silico prediction of hybrid crosses from the elite lines, which is hypothesized to improve the test cross scheme, leading to higher genetic gain in a breeding program. This study aimed to explore the potential of implementing genomic selection in a sweet corn breeding program through hybrid prediction in a within-site across-year and across-site framework. A total of 506 hybrids were evaluated in six environments (California, Florida, and Wisconsin, in the years 2020 and 2021). A total of 20 traits from three different groups were measured (plant-, ear-, and flavor-related traits) across the six environments. Eight statistical models were considered for prediction, as the combination of two genomic prediction models (GBLUP and RKHS) with two different kernels (additive and additive + dominance), and in a single- and multi-trait framework. Also, three different cross-validation schemes were tested (CV1, CV0, and CV00). The different models were then compared based on the correlation between the estimated breeding values/total genetic values and phenotypic measurements. Overall, heritabilities and correlations varied among the traits. The models implemented showed good accuracies for trait prediction. The GBLUP implementation outperformed RKHS in all cross-validation schemes and models. Models with additive plus dominance kernels presented a slight improvement over the models with only additive kernels for some of the models examined. In addition, models for within-site across-year and across-site performed better in the CV0 than the CV00 scheme, on average. Hence, GBLUP should be considered as a standard model for sweet corn hybrid prediction. In addition, we found that the implementation of genomic prediction in a sweet corn breeding program presented reliable results, which can improve the testcross stage by identifying the top candidates that will reach advanced field-testing stages.

17.
Heliyon ; 10(7): e28544, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601571

RESUMO

PURPOSE: This study aims to describe the total EEG energy during episodes of intracranial hypertension (IH) and evaluate its potential as a classification feature for IH. NEW METHODS: We computed the sample correlation coefficient between intracranial pressure (ICP) and the total EEG energy. Additionally, a generalized additive model was employed to assess the relationship between arterial blood pressure (ABP), total EEG energy, and the odds of IH. RESULTS: The median sample cross-correlation between total EEG energy and ICP was 0.7, and for cerebral perfusion pressure (CPP) was 0.55. Moreover, the proposed model exhibited an accuracy of 0.70, sensitivity of 0.53, specificity of 0.79, precision of 0.54, F1-score of 0.54, and an AUC of 0.7. COMPARISON WITH EXISTING METHODS: The only existing comparable methods, up to our knowledge, use 13 variables as predictor of IH, our model uses only 3, our model, as it is an extension of the generalized model is interpretable and it achieves the same performance. CONCLUSION: These findings hold promise for the advancement of multimodal monitoring systems in neurocritical care and the development of a non-invasive ICP monitoring tool, particularly in resource-constrained environments.

18.
Front Vet Sci ; 11: 1325198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605925

RESUMO

Feed additives such as monensin (MON) and virginiamycin (VM) are commonly utilized in feedlot diets to enhance rumen fermentation. Nevertheless, the precise effects of combining MON and VM during specific feedlot periods and the advantages of this combination remain unclear. This study was designed to investigate the effects of withdrawal of MON when associated with VM during the adaptation and finishing periods on ruminal metabolism, feeding behavior, and nutrient digestibility in Nellore cattle. The experimental design was a 5 × 5 Latin square, where each period lasted 28 days. Five rumen-cannulated Nellore yearling bulls were used (414,86 ± 21,71 kg of body weight), which were assigned to five treatments: (1) MON during the entire feeding period; (2) VM during the entire feeding period; (3) MON + VM during the adaptation period and only VM during the finishing period 1 and 2; (4) MON + VM during the entire feeding period; (5) MON + VM during the adaptation and finishing period 1 and only VM during the finishing period 2. For the finishing period 1, animals fed T3 had improved potential degradability of dry matter (p = 0.02). Cattle fed T3 and T5 had the highest crude protein degradability when compared to animals receiving T2 (p = 0.01). Animals fed T2 and T3 had reduced the time (p < 0.01) and area under pH 6.2 (p = 0.02). Moreover, animals fed T4 had greater population of protozoa from the genus Diplodinium (p = 0.04) when compared to those from animals fed T2, T3 and T5. For the finishing period 2, animals fed T3 had greater starch degradability when compared to animals receiving T4 and T5 (p = 0.04). Animals fed T3, T4 and T5 had increased the duration of time in which pH was below 5.6 (p = 0.03). The area under the curve for ruminal pH 5.2 and pH 5.6 was higher for the animals fed T3 (p = 0.01), and the area under pH 6.2 was higher for the animals fed T3 and T5 (p < 0.01) when compared to animals receiving T2. There is no substantial improvement on the rumen fermentation parameters by the concurrent utilization of MON and VM molecules, where the higher starch and protein degradability did not improve the rumen fermentation.

19.
Curr Issues Mol Biol ; 46(4): 3424-3437, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38666945

RESUMO

Escherichia coli phytase (AppA) is widely used as an exogenous enzyme in monogastric animal feed mainly because of its ability to degrade phytic acid or its salt (phytate), a natural source of phosphorus. Currently, successful recombinant production of soluble AppA has been achieved by gene overexpression using both bacterial and yeast systems. However, some methods for the biomembrane immobilization of phytases (including AppA), such as surface display on yeast cells and bacterial spores, have been investigated to avoid expensive enzyme purification processes. This study explored a homologous protein production approach for displaying AppA on the cell surface of E. coli by engineering its outer membrane (OM) for extracellular expression. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of total bacterial lysates and immunofluorescence microscopy of non-permeabilized cells revealed protein expression, whereas activity assays using whole cells or OM fractions indicated functional enzyme display, as evidenced by consistent hydrolytic rates on typical substrates (i.e., p-nitrophenyl phosphate and phytic acid). Furthermore, the in vitro results obtained using a simple method to simulate the gastrointestinal tract of poultry suggest that the whole-cell biocatalyst has potential as a feed additive. Overall, our findings support the notion that biomembrane-immobilized enzymes are reliable for the hydrolysis of poorly digestible substrates relevant to animal nutrition.

20.
Materials (Basel) ; 17(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612010

RESUMO

The present study aimed to characterize the microstructure of a temporary 3D printing polymer-based composite material (Resilab Temp), evaluating its optical properties and mechanical behavior according to different post-curing times. For the analysis of the surface microstructure and establishment of the best printing pattern, samples in bar format following ISO 4049 (25 × 10 × 3 mm) were designed in CAD software (Rhinoceros 6.0), printed on a W3D printer (Wilcos), and light-cured in Anycubic Photon for different lengths of time (no post-curing, 16 min, 32 min, and 60 min). For the structural characterization, analyses were carried out using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The mechanical behavior of this polymer-based composite material was determined based on flexural strength tests and Knoop microhardness. Color and translucency analysis were performed using a spectrophotometer (VITA Easy Shade Advanced 4.0), which was then evaluated in CIELab, using gray, black, and white backgrounds. All analyses were performed immediately after making the samples and repeated after thermal aging over two thousand cycles (5-55 °C). The results obtained were statistically analyzed with a significance level of 5%. FT-IR analysis showed about a 46% degree of conversion on the surface and 37% in the center of the resin sample. The flexural strength was higher for the groups polymerized for 32 min and 1 h, while the Knoop microhardness did not show a statistical difference between the groups. Color and translucency analysis also did not show statistical differences between groups. According to all of the analyses carried out in this study, for the evaluated material, a post-polymerization time of 1 h should be suggested to improve the mechanical performance of 3D-printed devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA