Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 75(11): 2857-2864, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31124266

RESUMO

Biological invasions, the expansion of agricultural frontiers, and climate change favor encounters of divergent lineages of animals and plants, increasing the likelihood of hybridization. However, hybridization of insect species and its consequences for agroecosystems have not received sufficient attention. Gene exchange between distinct and distant genetic pools can improve the survival and reproduction of insect pests, and threaten beneficial insects in disturbed agricultural environments. Hybridization may be the underlying explanation for the recurrent pest outbreaks and control failures in putative hybrid zones, as suspected for bollworm, corn borer, whiteflies, and stink bugs. Reliable predictions of the types of changes that can be expected in pest insect genomes and fitness, and of their impacts on the fate of species and populations remain elusive. Typical steps in pest management, such as insect identification, pest monitoring, and control are likely affected by gene flow and adaptive introgression mediated by hybridization, and we do not have ways to respond to or mitigate the problem. To address the adverse effects of farming intensification and global trade, we must ensure that current integrated pest management programs incorporate up-to-date monitoring and diagnostic tools. The rapid identification of hybrids, quantification of levels of introgression, and in-depth knowledge of what genes have been transferred may help to explain and predict insect population outbreaks and control failures in the future. © 2019 Society of Chemical Industry.


Assuntos
Hibridização Genética , Controle de Insetos , Insetos/fisiologia , Agricultura , Animais , Insetos/genética , Dinâmica Populacional
2.
Mol Ecol ; 26(19): 5160-5172, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28777894

RESUMO

Understanding the genetic basis of phenotypic variation and the mechanisms involved in the evolution of adaptive novelty, especially in adaptive radiations, is a major goal in evolutionary biology. Here, we used whole-genome sequence data to investigate the origin of the yellow hindwing bar in the Heliconius cydno radiation. We found modular variation associated with hindwing phenotype in two narrow noncoding regions upstream and downstream of the cortex gene, which was recently identified as a pigmentation pattern controller in multiple species of Heliconius. Genetic variation at each of these modules suggests an independent control of the dorsal and ventral hindwing patterning, with the upstream module associated with the ventral phenotype and the downstream module with the dorsal one. Furthermore, we detected introgression between H. cydno and its closely related species Heliconius melpomene in these modules, likely allowing both species to participate in novel mimicry rings. In sum, our findings support the role of regulatory modularity coupled with adaptive introgression as an elegant mechanism by which novel phenotypic combinations can evolve and fuel an adaptive radiation.


Assuntos
Evolução Biológica , Mimetismo Biológico/genética , Borboletas/genética , Pigmentação/genética , Animais , Variação Genética , Genética Populacional , Genótipo , Fenótipo , Filogenia , Asas de Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA