Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 21(1): 149, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330210

RESUMO

BACKGROUND: Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. RESULTS: Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. CONCLUSIONS: Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny.


Assuntos
Lagartos , Animais , Evolução Biológica , Ecossistema , Humanos , Fenótipo , Filogenia
2.
Mol Ecol ; 29(7): 1219-1234, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31710745

RESUMO

Sympatric speciation occurs without geographical barriers and is thought to often be driven by ecological specialization of individuals that eventually diverge genetically and phenotypically. Distinct morphologies between sympatric populations occupying different niches have been interpreted as such differentiating adaptive phenotypes, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric crater lake cichlid species from Nicaragua, one being a shore-associated (benthic) species while the other prefers the open water zones (limnetic), affect cruising (Ucrit ) and sprinting (Usprint ) swimming abilities - performances particularly relevant to their respective lifestyles. Furthermore, we investigated species differences in oxygen consumption (MO2 ) across different swimming speeds and compare gene expression in gills and white muscle at rest and during exercise. We found a superior cruising ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus astorquii, while sprinting was not different, suggesting that their distinct morphologies affect swimming performance. Increased cruising swimming ability in A. zaliosus was linked to a higher oxygen demand during activity (but not rest), indicating different metabolic rates during exercise - a hypothesis supported by coinciding gene expression patterns of gill transcriptomes. We identified differentially expressed genes linked to swimming physiology, regulation of swimming behaviour and oxygen intake. A combination of physiological and morphological differences may thus underlie adaptations to these species' distinct niches. This complex ecological specialization probably resulted in morphological and physiological trade-offs that contributed to the rapid establishment and maintenance of divergence with gene flow.


Assuntos
Ciclídeos/genética , Ciclídeos/fisiologia , Natação/fisiologia , Simpatria , Adaptação Fisiológica , Animais , Tamanho Corporal , Ciclídeos/classificação , Expressão Gênica , Brânquias , Lagos , Nicarágua , Consumo de Oxigênio , Fenótipo , Especificidade da Espécie , Transcriptoma
3.
PeerJ ; 3: e1411, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26644970

RESUMO

Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations of Datura stramonium, we compared the degree of phenotypic differentiation (P ST) of leaf resistance traits (trichome density, atropine and scopolamine concentration) against neutral genetic differentiation (F ST) at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher than F ST across the range of trait heritability values. In contrast, genetic differentiation in trichome density was different from F ST only when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits in D. stramonium.

4.
J Evol Biol ; 27(6): 1160-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24800647

RESUMO

There is an increasing evidence that populations of ectotherms can diverge genetically in response to different climatic conditions, both within their native range and (in the case of invasive species) in their new range. Here, we test for such divergence in invasive whitefly Bemisia tabaci populations in tropical Colombia, by considering heritable variation within and between populations in survival and fecundity under temperature stress, and by comparing population differences with patterns established from putatively neutral microsatellite markers. We detected significant differences among populations linked to mean temperature (for survival) and temperature variation (for fecundity) in local environments. A QST  - FST analysis indicated that phenotypic divergence was often larger than neutral expectations (QST  > FST ). Particularly, for survival after a sublethal heat shock, this divergence remained linked to the local mean temperature after controlling for neutral divergence. These findings point to rapid adaptation in invasive whitefly likely to contribute to its success as a pest species. Ongoing evolutionary divergence also provides challenges in predicting the likely impact of Bemisia in invaded regions.


Assuntos
Adaptação Biológica , Hemípteros/fisiologia , Clima Tropical , Animais , Colômbia , Feminino , Fertilidade , Resposta ao Choque Térmico , Espécies Introduzidas , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA