Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891312

RESUMO

Macrophytes and cladocerans represent the main antagonistic groups that regulate phytoplankton biomass; however, the mechanism behind this interaction is unclear. In laboratory conditions, we separately evaluated the effects of three submerged macrophytes (Ceratophyllum demersum, Myriophyllum aquaticum, and Stuckenia pectinata), as well as their exudates, and plant-associated microbiota (POM < 25 µm) + exudates on the population growth of Daphnia cf. pulex and Simocephalus cf. mixtus. Living Ceratophyllum, exudates, and POM < 25 µm + exudates exhibited the most robust positive effects on Simocephalus density and the rate of population increase (r). Subsequently, we examined the effects of Ceratophyllum on the filtration and feeding rates of Simocephalus and Daphnia, revealing significant (p < 0.001) promotion of filtration and feeding in Simocephalus but not in Daphnia. To elucidate the specific effects of this macrophyte on Simocephalus demography, we assessed selected life table variables across the same treatments. The treatments involving exudates and living Ceratophyllum resulted in approximately 40% longer survivorship and significantly (p < 0.01) enhanced fecundity. Our findings indicate that exudates from submerged macrophytes positively influence Simocephalus demography by increasing filtration rates, survivorship, and fecundity. This synergy suggests a substantial impact on phytoplankton abundance.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38861061

RESUMO

During 2015, monthly zooplankton sampling and measurements of surface temperature (SST), salinity, dissolved oxygen and chlorophyll a were conducted. Collections were made during neap tides at four locations between the inner and near the mouth of Magdalena Bay, Mexico. Thirty-three taxonomic groups were identified, and the most abundant taxa were copepods, diplostracans, decapods, ichthyoplankton (fish eggs), and chaetognaths. Zooplankton abundance did not vary significantly over time but did vary between sampling stations. SST and salinity were significantly correlated with the spatial distribution of organisms. Differences were found between the mortality percentages for the sampling stations and also for the taxonomic groups analyzed (Copepods 18%; Decapods 32%; Chaetognaths 33%), which implies the importance of carrying out mortality determination analyses in ecological studies of zooplankton.

3.
Environ Sci Pollut Res Int ; 31(24): 35779-35788, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38744760

RESUMO

Studies on functional traits of aquatic communities are useful for understanding the ecosystem dynamics as well as the diversity of ecological niches. Here, we characterize zooplankton functional groups and which limnological factors are responsible to changes in traits. Water samples were collected to evaluate limnological parameters and vertical hauls with plankton net (68 µm) were performed to characterize the community in seven reservoirs (Itupararanga, Atibainha, Salto Grande, Rio Grande, Igaratá, Barra Bonita, and Broa, São Paulo state, Brazil). Each species identified was classified according to a trophic group, reproduction mode, body length, habitat, and feeding habitats. Our results showed a predominance of pelagic suspensory herbivores with cilia (31%) followed by pelagic herbivore suspension filter feeders (17%) and raptorial omnivores (15.38%). The other individuals were categorized as pelagic herbivore suspension with oral device (12.3%), littoral herbivores suspensive with cilia (12.3%), pelagic-sucking herbivores (9.2%), and littoral grazing herbivores (3%). The dominance of herbivores may be influenced by the availability of nutrients, influencing their food sources. The abundance of omnivores engaged in predatory behavior can be attributed to disponible prey, thereby exerting significant repercussions on the organization of biological communities.


Assuntos
Biodiversidade , Zooplâncton , Brasil , Zooplâncton/classificação , Animais , Ecossistema , Lagos , Comportamento Alimentar/fisiologia
4.
Oecologia ; 205(2): 271-279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822197

RESUMO

Concordance occurs when two or more biological groups are correlated to each other. Examining the degree of concordance between communities has been a central goal in ecology. However, few studies have assessed the levels of community concordance at large spatial scales. We used a dataset obtained by the National Lakes Assessment (United States Environmental Protection Agency) to evaluate whether (i) the levels of concordance between aquatic communities were higher at the continental scale than within individual ecoregions of the United States and (ii) whether the levels of concordance between phytoplankton and zooplankton were higher than those between the plankton and macroinvertebrates communities. At the continental scale, the levels of concordance between different pairs of aquatic communities were low and did not exceed those within the ecoregions. Furthermore, levels of concordance varied considerably among ecoregions. Our results suggest that interactions between aquatic communities likely determined concordance patterns; however, the expectation of higher levels of concordance between the phytoplankton and zooplankton communities than between them and the macroinvertebrates community was not supported. The consistently low and variable levels of concordance suggest that using surrogate groups is not recommendable for monitoring lakes in the United States, both at the continental and regional scales. According to our results, the prospect of using the surrogacy approach was low even for aquatic communities that are highly interactive or driven by similar environmental factors.


Assuntos
Lagos , Fitoplâncton , Zooplâncton , Estados Unidos , Animais , Invertebrados , Ecossistema
5.
Chemosphere ; 353: 141577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430937

RESUMO

Pollution in aquatic ecosystems has been increasing drastically worldwide changing their water quality. Therefore, species must be adapted to these new scenarios. In Aguascalientes City, four representative urban reservoirs contain lead in the water column and extremely high concentrations of sediments. Therefore, an analysis was conducted to evaluate the resilience of zooplankton species to lead exposure in each reservoir using dormant and organisms. Results demonstrated a decrease range from 57.5 to 22.5% in overall diapausing egg hatching rate, while survivorship rate also decreased from 98 to 54% when organisms were exposed to the water of the four reservoirs and increasing lead concentrations. When Pb exposure increased, results showed a global negative effect on both hatching rate (decreasing from 58 to 30% at 0.09 mg L-1) and survivorship levels (decreasing from 100% to 0.07% at 0.09 mg L-1). We provide Species Sensitivity Distribution for both water reservoir dilutions and lead concentration to analyze diapausing eggs hatching and survivorship of offspring in the presence of same polluted conditions or lead of the autochthonous species found in reservoirs. Furthermore, specific analysis with two populations of the cladoceran Moina macrocopa showed clear dissimilar hatching patterns that suggested a different adaptive mechanism. Niagara population shows a hatching rate of approximately 25% in the first two days of reservoir water exposure, while UAA population drastically increased hatching rate to 75% on exposure at day seven. We provide the first record of bioaccumulation in ephippia of M. macrocopa.


Assuntos
Cladocera , Resiliência Psicológica , Rotíferos , Poluentes Químicos da Água , Animais , Chumbo/toxicidade , Ecossistema , México , Poluentes Químicos da Água/toxicidade , Eutrofização , Zooplâncton
6.
Environ Sci Pollut Res Int ; 31(3): 3754-3762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091224

RESUMO

Insecticides are widely used for pest control and frequently reach aquatic systems, imposing a risk to the biota. In this work, the effect of environmental concentrations of bifenthrin on the grazing capacity of Simocephalus vetulus (Cladocera) and Argyrodiaptomus falcifer (Copepoda) on phytoplankton was evaluated. Fifteen microcrustacean individuals and a natural phytoplankton assemblage dominated by Cyanobacteria were exposed during 46 h to three concentrations of bifenthrin (C0 0 µg L-1, C1 0.02 µg L-1, and C2 0.05 µg L-1). A significant decrease in both microcrustaceans grazing rates on total phytoplankton was observed in C2 compared to C0 and C1. The filtration rate (ml ind-1 h-1) of S. vetulus decreased significantly for the cyanobacteria Anabaenopsis arnoldii, Dolichospermum circinale, and Glaucospira sp. in C2 compared to C0 and C1. The ingestion rate (org ind-1 h-1) of A. falcifer decreased significantly in C1 and C2 compared to C0 only for A. arnoldii. Regarding phytoplankton morphological groups, the filtration rate of S. vetulus decreased in C1 and C2 compared to C0 for Colonies and Coenobiums in C2 concerning C0 and C1 for Filaments and in C2 compared to C0 for Silicified. For A. falcifer, the ingestion rate was reduced in C2 compared to C0 for Silicified, Flagellated, and Sessile. The results showed that bifenthrin affected both microcrustaceans grazing capacity on phytoplankton, especially at the highest insecticide concentration.


Assuntos
Cladocera , Copépodes , Cianobactérias , Inseticidas , Piretrinas , Humanos , Animais , Fitoplâncton , Zooplâncton , Inseticidas/farmacologia
7.
Mar Environ Res ; 190: 106116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544040

RESUMO

To confirm the Habitat Compression Hypothesis, a cruise to the Eastern Tropical North Pacific (ETNP) took place at the entrance of the Gulf of California, in an area rarely studied at the southern limit of the California Current, where it mixes with waters of the West Mexican Current and the Gulf of California. No significant day-night differences in the vertical distribution (0-500 m depth) of zooplankton were found based on 22 MOCNESS tows and, for the first time, a 48-h cycle of stratified zooplankton sampling. Most zooplankton groups were observed within the upper 100 m, above the oxycline, with oxygen concentrations as low as 45 µmol kg-1. Some California Current-influenced samples showed a slightly different vertical distribution. A ∼50% reduction in the number and abundance of 24 zooplankton groups was recorded within the Oxygen Minimum Zone, from 100 to 500 m depth. Vertical migrator's exceptions include some euphausiid species that migrate into the OMZ during the day. Principal Component Analyses showed that the vertical distribution of zooplankton is limited by oxygen, with a low zooplankton carbon density below ∼100 m depth within the OMZ. The difference between day and night for the upper 0-100 m layer was non-significant (U221 = 57; p = 0.947); however, the data showed great variability. Thus, zooplankton Carbon remains relatively constant, in the upper 100 m, and is available during day and night, in the studied area.


Assuntos
Oxigênio , Zooplâncton , Animais , Ecossistema , México
8.
Toxics ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37624198

RESUMO

Changes in food quality can dramatically impair zooplankton fitness, especially in eutrophic water bodies where cyanobacteria are usually predominant. Cyanobacteria are considered a food with low nutritional value, and some species can produce bioactive secondary metabolites reported as toxic to zooplankton. Considering that cyanobacteria can limit the survival, growth and reproduction of zooplankton, we hypothesized that the dietary exposure of neotropical Daphnia species (D. laevis and D. gessneri) to saxitoxin-producing cyanobacteria impairs Daphnia feeding rates and fitness regardless of a high availability of nutritious algae. Life table and grazing assays were conducted with different diets: (1) without nutritional restriction, where neonates were fed with diets at a constant green algae biomass (as a nutritious food source), and an increasing cyanobacterial concentration (toxic and poor food source), and (2) with diets consisting of different proportions of green algae (nutritious) and cyanobacteria (poor food) at a total biomass 1.0 mg C L-1. In general, the presence of high proportions of cyanobacteria promoted a decrease in Daphnia somatic growth, reproduction and the intrinsic rate of population increase (r) in both diets with more pronounced effects in the nutritionally restricted diet (90% R. raciborskii). A two-way ANOVA revealed the significant effects of species/clone and treatments in both assays, with significant interaction between those factors only in the second assay. Regarding the grazing assay, only D. laevis was negatively affected by increased cyanobacterial proportions in the diet. In the life table assay with constant nutritious food, a reduction in the reproduction and the intrinsic rate of the population increase (r) of all species were observed. In conclusion, we found adverse effects of the toxic cyanobacterial strain R. raciborskii on Daphnia fitness, regardless of the constant amount of nutritious food available, proving the toxic effect of R. raciborskii and that the nutritional quality of the food has a greater influence on the fitness of these animals.

9.
Environ Sci Pollut Res Int ; 30(35): 83025-83050, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37338688

RESUMO

Plastic pollution is a threat to the marine environment, the destination of mismanaged plastic. Due to reduced size, microplastics and nanoplastics (MNPs) can interact with a wide range of organisms. Non-selective filter feeder zooplanktonic microcrustaceans are potential targets for MNP accumulation. Zooplankton is a key group for the food web, linking primary producers to secondary consumers. The genus Artemia has been widely used to investigate the effects of plastic particles on the biota. The present work critically reviewed the ecotoxicological studies about plastic particles and Artemia, pointing out methodological aspects and effects caused by MNPs, highlighting their importance and limitations, and suggesting directions for future research. We analyzed twenty-one parameters into four categories: characteristics of plastic particles, general particularities of brine shrimp, methodologies of the cultures, and toxicological parameters. The principal gaps in the area are the lack of methodological standardization regarding the physicochemical parameters of the particles, the biology of the animals, and culture conditions. Even though few studies performed realistic exposure scenarios, results indicate MNPs as potential harmful contaminants to microcrustaceans. The main effects reported were particle ingestion and accumulation followed by reduced brine shrimp survival/mobility. The present review poses Artemia as suitable animals for investigations concerning the risks of MNP exposure at the individual level and to the ecosystems, although protocol standardization is still needed.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Artemia , Ecossistema , Poluentes Químicos da Água/análise , Zooplâncton
10.
Environ Sci Pollut Res Int ; 30(33): 81174-81188, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314563

RESUMO

This study analyzes the distribution of nine potentially toxic trace elements (arsenic, antimony, bromine, cobalt, chromium, mercury, rubidium, selenium, and zinc) in sediments and plankton from two small mesotrophic lakes in a non-industrialized area impacted by the Caviahue-Copahue volcanic complex (CCVC). The two lakes have different plankton community structures and received different amounts of pyroclastic material after the last CCVC eruption. Trace element concentrations of surface sediments differed between lakes, according to the composition of the volcanic ashes deposited in the lakes. The size of organisms was the principal factor influencing the accumulation of most trace elements in plankton within each lake, being trace element concentrations generally higher in the microplankton than in the mesozooplankton. The planktonic biomass in the shallower lake was dominated by small algae and copepods, while mixotrophic ciliates and different-sized cladocerans dominated the deeper lake. These differences in the community structure and species composition influenced the trace element bioaccumulation, especially in microplankton, while habitat use and feeding strategies seem more relevant in mesozooplankton bioaccumulation. This work contributes to the scarce records of trace elements and their dynamics in plankton from freshwater ecosystems impacted by volcanic activity.


Assuntos
Plâncton , Oligoelementos , Plâncton/química , Lagos/química , Ecossistema , Argentina , Altitude , Monitoramento Ambiental
11.
Chemosphere ; 332: 138846, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146772

RESUMO

Anthropogenic activity has dramatically deteriorated aquatic ecosystems in recent years. Such environmental alterations could change the primary producers' composition, exacerbating the proliferation of harmful microorganisms such as cyanobacteria. Cyanobacteria can produce several secondary metabolites, including guanitoxin, a potent neurotoxin and the only naturally occurring anticholinesterase organophosphate ever reported in the literature. Therefore, this study investigated the acute toxicity of guanitoxin-producing cyanobacteria Sphaerospermopsis torques-reginae (ITEP-024 strain) aqueous and 50% methanolic extracts in zebrafish (Danio rerio) hepatocytes (ZF-L cell line), zebrafish embryos (fish embryo toxicity - FET) and specimens of the microcrustacean Daphnia similis. For this, hepatocytes were exposed to 1-500 mg/L of the ITEP-024 extracts for 24 h, the embryos to 31.25-500 mg/L for 96 h, and D. similis to 10-3000 mg/L for 48 h. Non-target metabolomics was also performed to analyze secondary metabolites produced by the ITEP-024 using LC-MS/MS. Metabolomics indicated the guanitoxin presence just in the aqueous extract of the ITEP-024 and the presence of the cyanopeptides namalides, spumigins, and anabaenopeptins in the methanolic extract. The aqueous extract decreased the viability of zebrafish hepatocytes (EC(I)50(24h) = 366.46 mg/L), and the methanolic extract was not toxic. FET showed that the aqueous extract (LC50(96) = 353.55 mg/L) was more toxic than the methanolic extract (LC50(96) = 617.91 mg/L). However, the methanolic extract had more sublethal effects, such as abdominal and cardiac (cardiotoxicity) edema and deformation (spinal curvature of the larvae). Both extracts immobilized daphnids at the highest concentration analyzed. However, the aqueous extract was nine times more lethal (EC(I)50(48h) = 108.2 mg/L) than the methanolic extract (EC(I)50(48h) = 980.65 mg/L). Our results showed an imminent biological risk for aquatic fauna living in an ecosystem surrounded by ITEP-024 metabolites. Our findings thus highlight the urgency of understanding the effects of guanitoxin and cyanopeptides in aquatic animals.


Assuntos
Cianobactérias , Poluentes Químicos da Água , Animais , Daphnia , Peixe-Zebra , Ecossistema , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cianobactérias/metabolismo , Poluentes Químicos da Água/metabolismo
12.
Environ Pollut ; 322: 121072, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36720339

RESUMO

This work describes the spatio-temporal distribution of suspected plastic and microplastic (MP) particles in estuarine plumes and analyzes the microplastic/zooplankton ratio. Subsurface hauls with a conical-cylindrical net were deployed in the coastal area of Tamandare (Pernambuco, Brazil), covering the plume of two rivers and a bay adjacent to coral reefs. A total of 2079 suspected plastic particles were detected, mostly fibers and fragments (>60%). Organic matter digestion was made using a 30% hydrogen peroxide solution, of which approximately 50% of suspected particles were validated as MPs. The average MP abundance was significantly higher during the high rainfall season (53.8 ± 89.6 and 18.8 ± 32.3 particles/m³, respectively), with higher values registered in the plume area (108.9 ± 158.5 and 44.6 ± 55.5 particles/m³). Polymer identification using FT-IR confirmed that suspected particles were mainly polypropylene, polyamide, and polyurethane. These results confirm the hypothesis of a temporal transport variation of MPs from the river to the coastal environments, particularly since the plume influences debris input. Eleven animal phyla were identified, and the subclass Copepoda was predominant (90%), particularly the nauplius stage (70%). Over 70% of verified MPs range between 20 and 2000 µm, equivalent to the most common size of zooplanktonic organisms. Results support that coastal areas near estuarine plumes are exposed to microplastic contamination, affecting species dependent on zooplankton in marine coastal food webs.


Assuntos
Poluentes Químicos da Água , Zooplâncton , Animais , Microplásticos , Plásticos , Brasil , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Monitoramento Ambiental
13.
Biodivers Data J ; 11: e97347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327308

RESUMO

Background: Studies referring the amphipod diversity have been mainly focused on the benthic environment. This study aimed to analye the epipelagic amphipod fauna composition in a sector of the southern Gulf of Mexico (GoM). Previous records in the Gulf mainly comprised the oceanic province; our dataset included both oceanic and neritic zones, off several fluvial and lagoon systems. The biological material comprised 485 data records and a total abundance of 3,802 individuals. New information: Surveys were conducted at 21 sampling stations around the Veracruz Reef System National Marine Park, a marine protected area in the southern GoM. As a result of this research, we found 16 families, 34 genera and 78 species belonging to the suborder Hyperiidea. Our records include species from the oceanic province (up to 1,200 m depth), such as those from the genus Scinia, members of the infraorder Physosomata. In addition, Lycaeopsiszamboangae were found off the Alvarado Lagoon. Information on the habitat of 78 amphipod species (neritic, oceanic) is provided. The dataset is available at https://www.gbif.org/dataset/af18f3f8-f899-4c97-af47-8a110f856f92.

14.
Rev. med. vet. zoot ; 69(3): 281-298, sep.-dic. 2022. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1424222

RESUMO

RESUMEN El objetivo de esta investigación fue establecer el biofloc a tres relaciones carbono/ nitrógeno (C/N): 10/1, 15/1 y 20/1, determinando la secuencia de remoción de N, el perfil de sólidos y la caracterización del zooplancton, para tal fin se dispuso de tres tanques con volumen de 7000 L, incorporando oxígeno al agua a través de un aireador tipo soplador. Se utilizó como fuente de N balanceado, fuente de carbono melaza y bicarbonato de sodio como fuente alcalinizante. Al inicio se incrementó el nitrógeno amoniacal total NAT a 2 mg/L, la alcalinidad total (AT) a 120 mg/L y se adicionó como inóculo 10 litros/tanque de agua proveniente de un estanque de cultivo, al sexto y décimo días se adicionó balanceado incrementando teóricamente el NAT en 4 mg/L y a partir del día 12 en 1 mg/L. En las tres relaciones C/N se evidenciaron procesos de nitrificación durante la estabilización del biofloc, hasta llegar en el tiempo a concentraciones no letales de amonio y nitrito para peces, menores a 1 mg/L. En cuanto a los sólidos volátiles, se encontró una mayor concentración en la relación 20/1, lo cual puede atribuirse a la mayor adición de melaza, con la consecuente producción de SSV a partir de la dominancia de comunidades heterotróficas, en los tres macrocosmos se presentaron comunidades del zooplancton, no obstante, el T2 presentaron la mayor abundancia y riqueza de organismos. Las tres relaciones C/N en biofloc establecieron condiciones de calidad de agua y alimento vivo.


ABSTRACT The objective of this research was to establish the biofloc at three carbon/nitrogen (C/N) relationships: 10/1, 15/1 and 20/1, determining the N removal sequence, the solids profile and the characterization of the zooplankton, for this purpose three tanks with a volume of 7000 L were available, incorporating oxygen into the water through a blower-type aerator. It was used as a source of balanced N, a source of carbon molasses and sodium bicarbonate as an alkalizing source. At the beginning, the total ammoniacal nitrogen NAT was increased to 2 mg/L, the total alkalinity (AT) to 120 mg/L and 10 liters / tank of water from a culture pond was added as inoculum, on the sixth and tenth days it was he added balanced, theoretically increasing the NAT by 4 mg/L and from day 12 by 1 mg/L. In the three C / N relationships, nitrification processes were evidenced during the stabilization of the biofloc, until reaching non-lethal concentrations of ammonium and nitrite for fish, less than 1 mg/L in time. Regarding volatile solids, a higher concentration was found in the 20/1 ratio, which can be attributed to the greater addition of molasses, with the consequent production of SSV from the dominance of heterotrophic communities, in the three macrocosms there were Zooplankton communities, however, T2 presented the highest abundance and richness of organisms. The three C / N relationships in biofloc established conditions of water quality and live food.

15.
Mar Environ Res ; 181: 105737, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075155

RESUMO

Stable isotope (SI) analysis is a standard tool to study marine food webs, usually based on the measurement of a few individuals from a small list of subjectively pre-defined species. The main objective of this study was to find out which species are significantly associated with the temporal variability of the SI composition of zooplankton in a tropical marine ecosystem. We investigated this by means of a novel species-biomass-isotopes-mixture (SBIM) approach that uses a relative biomass matrix to explain the SI signature of the zooplankton community. Furthermore, SBIM was applied to detect key taxa that can be considered bioindicators for important descriptors of ecosystem state (e.g., oligotrophy, carbon sources, mean trophic level). Plankton samples (64 µm mesh size) were obtained in Tamandaré Bay (northeastern Brazil) from June 2013 to August 2019. One aliquot of each sample was taken for stable isotope measurements and one for taxonomic identification and estimation of size and relative biomass. Total zooplankton biomass differed significantly between years, seasons and stations. Total zooplankton δ13C values ranged from -21.0 to -18.2‰ (mean ± standard deviation: -19.7 ± 0.7‰ in the dry season, and -19.4 ± 0.8‰ in the rainy season). Total zooplankton δ15N values ranged from 3.8 to 9.0‰ (7.0 ± 1.0‰ in the dry season, and 6.5 ± 1.2‰ rainy season). Total zooplankton C/N ratios ranged from 3.5 to 5.0 (4.2 ± 0.4 in the dry season and 4.2 ± 0.3 in the rainy season). The sparsely abundant and relatively large-sized copepod Pseudodiaptomus acutus was the most important species for explaining the variability in δ15N (22% of the total variability). Relative biomass (%) of P. acutus showed a strong positive correlation with δ15N, indicating a high trophic level (TL). Our results highlight the importance of less abundant taxa for marine food webs. Small-sized invertebrate larvae were negatively correlated with δ15N, indicating a TL below average. The copepod Dioithona oculata was the most important organism in explaining the δ13C of zooplankton (17.7% of the total variability, positive correlation with δ13C), indicating possible selective use of a13C-enriched food source (e.g., diatoms) by this cyclopoid copepod. Oithona spp. juveniles showed a negative relationship with zooplankton C/N ratio, which can be indicators of an oligotrophic ecosystem state and lipid-poor zooplankton. The tintinnid F. ehrenbergii showed a positive correlation with C/N, being an indicator for turbid "green waters'', during the rainy season, when the ecosystem was in a eutrophic state, with high lipid contents in the zooplankton community. The proposed SBIM approach opens up a novel pathway to understanding the factors and species that shape the temporal variability of food webs.


Assuntos
Copépodes , Ecossistema , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Lipídeos , Isótopos de Nitrogênio/análise , Fatores de Tempo , Zooplâncton/metabolismo
16.
Parasitol Res ; 121(9): 2661-2672, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35857092

RESUMO

Larval didymozoids (Trematoda: Digenea) were discovered parasitizing the hemocoel of the heteropod Firoloida desmarestia (redia mean intensity = 13) and the chaetognaths Flaccisagitta enflata and Flaccisagitta hexaptera (metacercaria mean intensity = 1) during a 2014-2016 systematic study of parasites of zooplankton collected in the central and southern regions of the Gulf of California, Mexico. Didymozoid infection route during the early life cycle was inferred combining morphological (light microscopy) and molecular (mitochondrial cytochrome c oxidase subunit I gene, cox1) evidence. Didymozoid rediae parasitizing F. desmarestia were observed, just after field collection of the host, containing hundredths of completely developed cystophorous cercariae, releasing them though the birth pore at approximately one cercaria every 12 s. Cercariae lost their tails developing into a 'young metacercaria' in 1 d at 22 °C without need of an intermediate host. Molecular analysis of cox1 showed that rediae found in F. desmarestia belong to two distinct didymozoid species (Didymozoidae sp. 1 and sp. 2). Metacercariae parasitizing chaetognaths were morphologically identified as Didymozoidae type Monilicaecum and cox1 sequences showed that metacercariae of chaetognaths matched with these two Didymozoidae sp. 1, and sp. 2 species found parasitizing F. desmarestia, plus a third distinct Didymozoidae sp. 3. These are the first DNA sequences of cox1 gene from didymozoid larvae for any zooplankton taxonomic group in the world. We concluded that F. desmarestia is the first intermediate host of rediae and cercariae, and the chaetognaths are the second intermediate hosts where non-encysted metacercariae were found. The definitive host is still unknown because cox1 sequences of present study did not genetically match with any available cox1 sequence of adult didymozoid. Our results demonstrate a potential overlap in the distribution of two carnivorous zooplankton taxonomic groups that are intermediate hosts of didymozoids in the pelagic habitat. The didymozoid specimens were not identified to species level because any of the cox1 sequences generated here matched with the sequences of adult didymozoids currently available in GenBank and Bold System databases. This study provides baseline information for the future morphological and molecular understanding of the Didymozoidae larvae that has been previously based on the recognition of the 12 known morphotypes.


Assuntos
Trematódeos , Zooplâncton , Animais , Cercárias/genética , Larva , Estágios do Ciclo de Vida , Metacercárias , Trematódeos/genética
17.
Environ Sci Pollut Res Int ; 29(42): 64124-64131, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35471758

RESUMO

Dissolved organic carbon (DOC) is often related to the brownification of water in continental aquatic systems and to changes in the physiology of zooplankton organisms. Zooplankton resting eggs are particularly sensitive to changes in light and chemical characteristics of water, but the physical and chemical effects associated to DOC on dormant stages have never been tested before. Herein, we tested how DOC affects hatching rates and time to hatching of Cladocera (Diaphanosoma birgei) resting eggs. In order to analyze the chemical (i.e., toxic) and physical (i.e., light attenuation) effects of DOC on hatching patterns, resting eggs were exposed to different concentrations of DOC (0, 50, and 100 mg L-1) in an experimental design which isolated chemical from physical effects. When evaluating the physical effects of DOC, hatching was more than 150% less in 100 than 50 mg L-1 DOC and time to hatching was 66% lesser in 50 mg L-1 DOC than control. Hatchling numbers and time to hatching were not affected by DOC chemical effects. We conclude DOC effects on hatching mainly relied on light attenuation, while chemical effects were likely of minor importance. DOC may change Cladocera emergence patterns mainly through light attenuation in the water column.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Carbono/química , Água/química , Poluentes Químicos da Água/toxicidade , Zooplâncton
18.
PeerJ ; 10: e12823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127292

RESUMO

Comau Fjord is a stratified Chilean Patagonian Fjord characterized by a shallow brackish surface layer and a >400 m layer of aragonite-depleted subsurface waters. Despite the energetic burden of low aragonite saturation levels to calcification, Comau Fjord harbours dense populations of cold-water corals (CWC). While this paradox has been attributed to a rich supply of zooplankton, supporting abundance and biomass data are so far lacking. In this study, we investigated the seasonal and diel changes of the zooplankton community over the entire water column. We used a Nansen net (100 µm mesh) to take stratified vertical hauls between the surface and the bottom (0-50-100-200-300-400-450 m). Samples were scanned with a ZooScan, and abundance, biovolume and biomass were determined for 41 taxa identified on the web-based platform EcoTaxa 2.0. Zooplankton biomass was the highest in summer (209 g dry mass m-2) and the lowest in winter (61 g dry mass m-2). Abundance, however, peaked in spring, suggesting a close correspondence between reproduction and phytoplankton spring blooms (Chl a max. 50.86 mg m-3, 3 m depth). Overall, copepods were the most important group of the total zooplankton community, both in abundance (64-81%) and biovolume (20-70%) followed by mysids and chaetognaths (in terms of biovolume and biomass), and nauplii and Appendicularia (in terms of abundance). Throughout the year, diel changes in the vertical distribution of biomass were found with a daytime maximum in the 100-200 m depth layer and a nighttime maximum in surface waters (0-50 m), associated with the diel vertical migration of the calanoid copepod family Metridinidae. Diel differences in integrated zooplankton abundance, biovolume and biomass were probably due to a high zooplankton patchiness driven by biological processes (e.g., diel vertical migration or predation avoidance), and oceanographic processes (estuarine circulation, tidal mixing or water column stratification). Those factors are considered to be the main drivers of the zooplankton vertical distribution in Comau Fjord.


Assuntos
Copépodes , Estuários , Animais , Biomassa , Zooplâncton , Chile , Estações do Ano , Água , Carbonato de Cálcio
19.
Environ Sci Pollut Res Int ; 29(16): 23194-23205, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34799801

RESUMO

Cyanobacterial blooms are increasingly common in aquatic environments worldwide. These microorganisms cause concern due to their ability to produce cyanotoxins. Aquatic organisms, especially zooplankton, are exposed to cyanobacterial toxins by different routes, depending on the bloom phase. During cyanobacterial dominance, zooplankton is exposed to cyanotoxins through the ingestion of cyanobacterial cells, while at the bloom senescence, dissolved toxins are the most representative route. In this study, we assessed the effects of a microcystin-producing strain of Microcystis aeruginosa (NPLJ-4) on clones of the tropical small cladocerans Macrothrix spinosa (two clones) and Ceriodaphnia cornuta (one clone) exposed to intact cells and aqueous cell crude extracts. Short-term toxicity assays and life-table experiments were performed to assess the effects of the toxic M. aeruginosa on the survival and life history of the cladocerans. In the short-term toxicity assay, we found that cladocerans were more affected by intact cells. Both clones of M. spinosa were more affected when exposed to intact cells, while C. cornuta displayed about 5-fold more resistance. On the other hand, crude extracts had a low impact on cladocerans' survival. Also, we observed a significant decrease in survival, fecundity, and growth of animals exposed to sublethal and environmentally relevant concentrations of M. aeruginosa cellular biomass. However, even at high concentrations of dissolved microcystins, the crude extract did not have significant effects on the life history parameters of the cladocerans. Although they can be found during cyanobacterial bloom events, small-bodied cladocerans are still affected by toxic Cyanobacteria depending on the exposure route.


Assuntos
Cladocera , Cianobactérias , Microcystis , Animais , Extratos Celulares , Ingestão de Alimentos , Microcistinas/toxicidade
20.
Mol Ecol ; 31(2): 546-561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697853

RESUMO

Zooplankton plays a pivotal role in sustaining the majority of marine ecosystems. The distribution patterns and diversity of zooplankton provide key information for understanding the functioning of these ecosystems. Nevertheless, due to the numerous cryptic and sibling species and the lack of diagnostic characteristics for early developmental stages, the identification of the global-to-local patterns of zooplankton biodiversity and biogeography remains challenging in different research fields. The spatial and temporal changes in the zooplankton community in the open waters of the southern Gulf of Mexico were assessed using metabarcoding analysis of the V9 region of 18S rRNA and mitochondrial cytochrome oxidase c subunit I (COI). Additionally, a multiscale analysis was implemented to evaluate which environmental predictors may explain the variability in the structure of the zooplankton community. Our findings suggest that the synergistic effects of dissolved oxygen concentration, temperature, and longitude (intended as a proxy for still unidentified predictors) may explain both spatial and temporal zooplankton variability even with low contribution. Furthermore, the zooplankton distribution probably reflects the coexistence of three heterogeneous ecoregions and a bio-physical partitioning of the studied area. Finally, some taxa were either exclusive or predominant with either 18S or COI markers. This may suggest that comprehensive assessments of the zooplankton community may be more accurately met by the use of multilocus approaches.


Assuntos
Ecossistema , Zooplâncton , Animais , Biodiversidade , Golfo do México , Oceanos e Mares , Água , Zooplâncton/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA