Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654167

RESUMO

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Assuntos
Azospirillum brasilense , Carvão Vegetal , Solo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiologia , Solo/química , Desidratação , Secas
2.
Environ Sci Pollut Res Int ; 29(23): 33909-33919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35031990

RESUMO

Due to increased industrialization, arsenic (As) in the soil has become a serious issue for wheat production since past few decades. We investigated the role of Azospirillum brasilense and trans-zeatin riboside (tZR) in the mitigation of arsenic toxicity in wheat for 2 years (2018-2019 and 2019-2020) in pot experiments. Wheat plants grown in soil artificially spiked with arsenic (50, 70, and 100 µM) was left alone or amended with A. brasilense, tZR, or their combination as mitigation strategies. A treatment without arsenic or amendments was maintained as control. Arsenic-induced physiological damages were noticed in the wheat plants. Detrimental effects on the plant physiological functions, such as disruption of cell membrane stability, reduced water uptake, and stomatal functions, were noticed with increase in As toxicity. Application of biological amendments reversed the effects of As toxicity by increasing wheat plant growth rate, leaf area, and photosynthesis and also yield. Therefore, application of tZR and wheat seed inoculation with A. brasilense could be a sustainable and environmentally friendly strategy to mitigate arsenic-induced crop physiological damages.


Assuntos
Arsênio , Azospirillum brasilense , Arsênio/metabolismo , Isopenteniladenosina/análogos & derivados , Raízes de Plantas/metabolismo , Solo , Triticum
3.
Front Oncol ; 10: 1032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793466

RESUMO

Purpose: To analyze human and bacteria proteomic profiles in bile, exposed to a tumor vs. non-tumor microenvironment, in order to identify differences between these conditions, which may contribute to a better understanding of pancreatic carcinogenesis. Patients and Methods: Using liquid chromatography and mass spectrometry, human and bacterial proteomic profiles of a total of 20 bile samples (7 from gallstone (GS) patients, and 13 from pancreatic head ductal adenocarcinoma (PDAC) patients) that were collected during surgery and taken directly from the gallbladder, were compared. g:Profiler and KEGG (Kyoto Encyclopedia of Genes and Genomes) Mapper Reconstruct Pathway were used as the main comparative platform focusing on over-represented biological pathways among human proteins and interaction pathways among bacterial proteins. Results: Three bacterial infection pathways were over-represented in the human PDAC group of proteins. IL-8 is the only human protein that coincides in the three pathways and this protein is only present in the PDAC group. Quantitative and qualitative differences in bacterial proteins suggest a dysbiotic microenvironment in the PDAC group, supported by significant participation of antibiotic biosynthesis enzymes. Prokaryotes interaction signaling pathways highlight the presence of zeatin in the GS group and surfactin in the PDAC group, the former in the metabolism of terpenoids and polyketides, and the latter in both metabolisms of terpenoids, polyketides and quorum sensing. Based on our findings, we propose a bacterial-induced carcinogenesis model for the biliary tract. Conclusion: To the best of our knowledge this is the first study with the aim of comparing human and bacterial bile proteins in a tumor vs. non-tumor microenvironment. We proposed a new carcinogenesis model for the biliary tract based on bile metaproteomic findings. Our results suggest that bacteria may be key players in biliary tract carcinogenesis, in a long-lasting dysbiotic and epithelially harmful microenvironment, in which specific bacterial species' biofilm formation is of utmost importance. Our finding should be further explored in future using in vitro and in vivo investigations.

4.
Planta ; 250(5): 1475-1489, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31327043

RESUMO

MAIN CONCLUSION: Nitric oxide increased lettuce's tolerance to salinity by restoring its hormonal balance, consequently reducing Na + accumulation and activating defense mechanisms that allowed the attenuation of ionic, oxidative, and osmotic stresses. Agricultural crops are continually threatened by soil salinity. The plant's ability to tolerate soil salinity can be increased by treatment with the signaling molecule nitric oxide (NO). Involvement of NO in plant metabolism and its interactions with phytohormones have not been fully described, so knowledge about the role of this radical in signaling pathways remains fragmented. In this work, Lactuca sativa (lettuce) plants were subjected to four treatments: (1) control (nutrient solution); (2) SNP [nutrient solution containing 70 µM sodium nitroprusside (SNP), an NO donor]; (3) NaCl (nutrient solution containing 80 mM NaCl); or (4) SNP + NaCl (nutrient solution containing SNP and NaCl). The plants were exposed to these conditions for 24 h, and then, the roots and leaves were collected and used to evaluate biochemical parameters (reactive oxygen species (ROS) production, cell membrane damage, cell death, antioxidant enzymes activities, and proline concentration), physiological parameters (pigments' concentration and gas-exchange measurements), and phytohormone content. To evaluate growth, tolerance index, and nutrient concentration, the plants were exposed to the treatments for 3 days. L sativa exposure to NaCl triggered ionic, osmotic, and oxidative stress, which resulted in hormone imbalance, cell death, and decreased growth. These deleterious changes were correlated with Na+ content in the vegetative tissues. Adding NO decreased Na+ accumulation and stabilized the mineral nutrient concentration, which maintained the photosynthetic rate and re-established growth. NO-signaling action also re-established the phytohormones balance and resulted in antioxidant system activation and osmotic regulation, with consequent increase in plants tolerance to the salt.


Assuntos
Lactuca/fisiologia , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Cloreto de Sódio/efeitos adversos , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Lactuca/crescimento & desenvolvimento , Nitroprussiato/metabolismo , Pressão Osmótica , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Salinidade , Sódio/metabolismo , Estresse Fisiológico
5.
Biotech Histochem ; 93(2): 149-154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29701111

RESUMO

We report a new method for histochemical localization of cytokinins (CKs) in plant tissues based on bromophenol blue/silver nitrate staining. The method was validated by immunohistochemistry using anti-trans-zeatin riboside antibody. Indole-3-acetic acid (auxin, IAA) was localized by anti-IAA antibody in plant tissues as a proof for IAA histolocalization. We used root sections, because they are major sites of CKs synthesis, and insect galls of Piptadenia gonoacantha that accumulate IAA. Immunostaining confirmed the presence of zeatin and sites of accumulation of IAA indicated by histochemistry. The colors developed by histochemical reactions in free-hand sections of plant tissues were similar to those obtained by thin layer chromatography (TLC), which reinforced the reactive sites of zeatin. The histochemical method for detecting CKs is useful for galls and roots, whereas IAA detection is more efficient for gall tissues. Therefore, galls constitute a useful model for validating histochemical techniques due to their rapid cell cycles and relatively high accumulation of plant hormones.


Assuntos
Citocininas/análise , Imuno-Histoquímica , Ácidos Indolacéticos/análise , Plantas/química , Coloração e Rotulagem/métodos , Azul de Bromofenol/química , Citocininas/química , Imuno-Histoquímica/métodos , Ácidos Indolacéticos/química , Raízes de Plantas/química , Nitrato de Prata/química
6.
Sci. agric ; 71(6): 488-493, nov-Dez. 2014. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497450

RESUMO

Common pepper (Capsicum annuum L.) is one of the most important vegetables in the world, and extensive breeding efforts are being made to develop new improved strains of this species. In this regard, in vitro culture of immature embryos may help breeders accelerate breeding cycles and overcome interspecific barriers, among other applications. In this study, we have optimized a protocol for in vitro culture of immature embryos of C. annuum. Levels of indole-3-acetic acid (IAA) and zeatin have been tested to improve the efficiency (germination rates) of this technique in C. annuum embryos at the four main immature stages (i.e. globular, heart, torpedo, and early cotyledonary) from four varietal types of this species (California Wonder, Piquillo, Guindilla, and Bola). The effect of 5-day initial incubation in the dark was also tested on the most efficient hormone formulation. On average, relatively low levels of both IAA and zeatin (0.01 mg L¹ each) (M1) provided the highest germination rates, particularly in the advanced stages (torpedo and cotyledonary). To a lesser extent, the lack of these growth regulators (M0) or high IAA (0.2 mg L¹)/low zeatin (0.01 mg L¹) (M2) combination also had a positive response. On the contrary, high zeatin levels (0.2 mg L¹) produced very low germination rates or callus development (efficiency 0-7 %). Different responses were also found between genotypes. Thus, considering the best media (M0, M1, M2), Bola embryos had the highest rates. M1 plus 5-days of initial dark incubation (M1-D) improved the efficiency rates at all embryo stages, particularly in the earliest (globular) embryos which increased from 3 % to > 20 %.


Assuntos
Capsicum/crescimento & desenvolvimento , Capsicum/embriologia , Genótipo , Sementes/crescimento & desenvolvimento , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas
7.
Sci. Agric. ; 71(6): 488-493, nov-Dez. 2014. tab, ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-28554

RESUMO

Common pepper (Capsicum annuum L.) is one of the most important vegetables in the world, and extensive breeding efforts are being made to develop new improved strains of this species. In this regard, in vitro culture of immature embryos may help breeders accelerate breeding cycles and overcome interspecific barriers, among other applications. In this study, we have optimized a protocol for in vitro culture of immature embryos of C. annuum. Levels of indole-3-acetic acid (IAA) and zeatin have been tested to improve the efficiency (germination rates) of this technique in C. annuum embryos at the four main immature stages (i.e. globular, heart, torpedo, and early cotyledonary) from four varietal types of this species (California Wonder, Piquillo, Guindilla, and Bola). The effect of 5-day initial incubation in the dark was also tested on the most efficient hormone formulation. On average, relatively low levels of both IAA and zeatin (0.01 mg L¹ each) (M1) provided the highest germination rates, particularly in the advanced stages (torpedo and cotyledonary). To a lesser extent, the lack of these growth regulators (M0) or high IAA (0.2 mg L¹)/low zeatin (0.01 mg L¹) (M2) combination also had a positive response. On the contrary, high zeatin levels (0.2 mg L¹) produced very low germination rates or callus development (efficiency 0-7 %). Different responses were also found between genotypes. Thus, considering the best media (M0, M1, M2), Bola embryos had the highest rates. M1 plus 5-days of initial dark incubation (M1-D) improved the efficiency rates at all embryo stages, particularly in the earliest (globular) embryos which increased from 3 % to > 20 %.(AU)


Assuntos
Capsicum/embriologia , Capsicum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Genótipo , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas
8.
Braz. arch. biol. technol ; Braz. arch. biol. technol;54(4): 643-648, July-Aug. 2011. ilus
Artigo em Inglês | LILACS | ID: lil-595615

RESUMO

A competitive hyper-immune yolk Immunoglobulin Y - Enzyme Linked Immune Sorbent Assay (CIgY-ELISA), was developed as an alternative method to detect zeatin and 2ip in plantlets of gerbera. The endogenous level of hormones in the plantlets in vitro of gerbera with one or six weeks after replication was determined with competitive IgY-ELISA set to detect between 1 and 100 pmoles of plant hormone for each 1.0 g tissue. The plantlets of six weeks presented sprouts and root, while the plantlets of one week presented only sprouts. The CIgY-ELISA was set with high independent variables values of sensitivity/specificity of 96/89 percent for zeatin and 94/78 percent for 2ip, with high values of reproducibility (up to 90 percent) for both the cytokinins. Zeatin content varied from 2.2 to 2.8 pmoles.g-1 and from 2.7 to 3.3 pmoles.g-1 on the plantlet with one and six weeks, respectively. The 2ip content did not vary and was detected near the detection limit in all the assays. It was concluded that the observed capabilities of CIgY-ELISA were putative and the competitive assay was a highly robust and stable method, which could be used for the studies on plant physiology for endogenous cytokinins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA