RESUMO
We propose to evaluate the dissolution properties of rosuvastatin calcium (ROSC) capsules in different media to characterize the discriminatory power of the assay method. Dissolution assays were performed in media with different pH, and including the surfactant sodium dodecyl sulfate (SDS). Several immediate-release formulations were manufactured using the commercial raw material characterized as amorphous solid. The hydrophobic adjutant magnesium stearate was employed in some formulations due to its negative effect in the wettability and dissolution efficacy of solid dosages. These formulations showed the lower dissolution efficacy values in media without surfactant; however, when SDS was added to the medium, the dissolution efficacy increased, and the discriminatory power was lost. In spite of micellar solubilization does not increase the ROSC solubility, it modifies the discriminatory power of the assay method, increasing the wettability of the powder mixtures. The crystalline form M of ROSC was recrystallized in our laboratory, and it showed lower solubility in water than amorphous solid. However, its dissolution properties were not influenced by SDS. These results are important to develop dissolution assays for other hydrophilic drugs with increased water solubility, once that dissolution media with surfactants increase the wettability of the formulations, leading to an overrated dissolution rate.
Assuntos
Cápsulas/análise , Dissolução/análise , Rosuvastatina Cálcica/análise , Solubilidade , Cromatografia Líquida de Alta Pressão/instrumentação , Formas de DosagemRESUMO
Pulmonary arterial hypertension (PAH) is a chronic cardiovascular disease that displays inflammatory components, which contributes to the difficulty of adequate treatment with the available therapeutic arsenal. In this context, the N-acylhydrazone derivative LASSBio-1359 was previously described as a multitarget drug candidate able to revert the events associated with the progression of PAH in animal models. However, in spite of having a dual profile as PDE4 inhibitor and adenosine A2A receptor agonist, LASSBio-1359 does not present balanced potencies in the modulation of these two targets, which difficult its therapeutic use. In this paper, we describe the design concept of LASSBio-1835, a novel structural analogue of LASSBio-1359, planned by exploiting ring bioisosterism. Using X-ray powder diffraction, calorimetric techniques, and molecular modeling, we clearly indicate the presence of a preferred synperiplanar conformation at the amide function, which is fixed by an intramolecular 1,5-NâââS σ-hole intramolecular interaction. Moreover, the evaluation of LASSBio-1835 (4) as a PDE4 inhibitor and as an A2A agonist confirms it presents a more balanced dual profile, being considered a promising prototype for the treatment of PAH.
RESUMO
A cocrystal of glibenclamide, an antidiabetic drug classified as type II compound according to the Biopharmaceutics Classification System, has been synthesized using tromethamine as coformer in 1:1 molar ratio, by slow solvent evaporation cocrystalization. The cocrystal obtained was characterized by X-ray powder diffraction, differential scanning calorimetry, Raman, mid infrared, and near-infrared spectroscopy. The results consistently show the formation of a cocrystal between active pharmaceutical ingredients and conformer with the synthons corresponding to hydrogen bonding between hydrogen in amines of tromethamine and carbonyl and sulfonyl groups in glibenclamide.
Assuntos
Cristalização/métodos , Excipientes/química , Glibureto/química , Hipoglicemiantes/química , Trometamina/química , Varredura Diferencial de Calorimetria , Ligação de Hidrogênio , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios XRESUMO
Finasteride (FNT) is a drug that inhibits human enzyme type II 5α-reductase that metabolizes testosterone into dihydrotestosterone. There are two enantiotropic polymorphs with known crystal structure: designated as forms I and II. Identification and control of these polymorphic forms in mixtures can be performed using X-ray powder diffraction (XRPD) data and Rietveld method (RM). As experimental conditions may limit the detection of minority phases in mixtures, it is interesting to show what are these limits for some usual and one high-resolution equipment. So, in this work, we discuss the parameters to find the limit of the detection in binary mixtures of forms I and II of FNT according to each experimental condition. The samples analyzed were binary mixtures prepared with anhydrous polymorphs of the drug FNT. These samples were measured in four diffractometers with different experimental condition. These equipments represent the main resolutions generally used for drug analysis by XRPD. For the development of this work, a batch of form I was obtained pure, and another batch with forms I and II was used to obtain pure form II by heat treatment. Depending on the experimental condition, the polymorphs could be detected in a proportion as low as 0.5 wt%. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3567-3575, 2014.
Assuntos
Cristalografia por Raios X , Finasterida/química , Difração de Pó , Tecnologia Farmacêutica/métodos , Inibidores de 5-alfa Redutase/química , Cristalização , Cristalografia por Raios X/instrumentação , Desenho de Equipamento , Limite de Detecção , Estrutura Molecular , Difração de Pó/instrumentação , Tecnologia Farmacêutica/instrumentaçãoRESUMO
As part as of the preformulation studies of new 5'-OH derivatives of zidovudine, compounds 2-6, their acid dissociation constants, Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG) curves, X-Ray Powder diffractograms and aqueous stability are reported. A sensitive technique such as differential scanning potentiometry was used to determine the pKa constants of the above mentioned compounds. In addition, pKa values were calculated from theoretical methods, and no significant differences with those of experimental ones were observed. X-Ray Powder Diffractometry data demonstrated that compounds 2-4 were crystalline while 5 and 6 were amorphous. DSC analysis indicated that all of them presented an exothermic decomposition peak above 150 °C which is accompanied by a weight loss in the respective TG curves. The stability of these compounds in aqueous medium at different pH values was investigated, using a validated High Performance Liquid Chromatography (HPLC) method, which demonstrated to be rapid, selective, sensitive, accurate and stability-indicating. Good recovery, linearity and precision were also achieved. For all compounds the aqueous hydrolysis followed a pseudo-first-order kinetics, depending on pH and the union existing between AZT and the associate moiety. The hydrolysis was catalyzed by hydroxide ion in the 7.4-13.2 pH range, while all compounds exhibited pH-independent stability from acidic to neutral media (pHs 1.0-7.4).
RESUMO
Plant biominerals are not always well characterized, although this information is important for plant physiology and can be useful for taxonomic purposes. In this work, fresh plant material of seven wild neotropical species of genus Canna, C. ascendens, C. coccinea, C. indica, C. glauca, C. plurituberosa, C. variegatifolia and C. fuchsina sp. ined., taken from different habitats, were studied to characterize the biominerals in their internal tissues. For the first time, samples from primary and secondary veins of leaves were investigated by means of infrared spectroscopy, complemented with X-ray powder diffractometry and scanning electron microscopy. The spectroscopic results, supported by X-ray powder diffractometry, suggest that the calcium oxalate is present in the form of whewellite (CaC2O4×H2O) in all the investigated samples. It is interesting to emphasize that all IR spectra obtained were strongly similar in all species studied, thus indicating an identical chemical composition in terms of the biominerals found. In this sense, the results suggest that the species of Canna show similar ability to produce biogenic silica and produce an identical type of calcium oxalate within their tissues. These results can be an additional trait to support the relationship among the families of Zingiberales. Rev. Biol. Trop. 58 (4): 1507-1515. Epub 2010 December 01.
Los biominerales de las plantas no siempre han sido bien caracterizados aunque esta información es importante en fisiología vegetal y puede ser de utilidad para fines taxonómicos. En este trabajo se estudió material vegetal fresco de siete especies silvestres neotropicales: Canna, C. ascendens, C. coccinea, C. indica, C. glauca, C. plurituberosa, C. variegatifolia and C. fuchsina sp. ined., provenientes de diferentes localidades, con el fin de caracterizar los biominerales presentes en sus tejidos foliares internos. Por vez primera, muestras de venas primarias (ejes foliares) y secundarias de hojas de estas especies se investigaron por medio de espectroscopia de infarrojo, complementada con estudios por difracción de rayos X de polvos y microscopía electrónica de barrido. Los resultados indicaron la presencia de ópalo (sílice biogénica) y oxalato de calcio en los tejidos vegetales analizados. Además, se determinó que el oxalato de calcio está presente en forma de whewellita (CaC2O4×H2O), información nueva para el género. Tanto el ópalo como la whewellita están presentes en todas las especies analizadas, que representan aproximadamente un tercio de las especies silvestres del género. La capacidad de biomineralizar SiO2 en forma de ópalo en especies de Canna de diversos ambientes resulta también un rasgo altamente sugerente para futuros estudios.