Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253975

RESUMO

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Fazendas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Inflamação
2.
Biotechnol Rep (Amst) ; 32: e00671, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34603976

RESUMO

Agroindustrial wastes contain macronutrients and micronutrients essential for the reproduction of lactic acid bacteria. In this research, the reproduction of Weissella cibaria was experimentally optimized in a supplemented fermentation substrate (SFS) formulated from pineapple and sacha inchi wastes. Response surface methodology was used to evaluate the influence of the following independent variables: temperature (32-40 °C), pH (5.0-6.0), and stirring speed (SS) (100-150 rpm) on the following dependent variables: viability (Log10 CFU mL-1), biomass production (B Wc ), lactic acid production (LA), biomass yield (YBwc/S), biomass volumetric productivity (VP Wc ), LA volumetric productivity (VP LA ), carbon source consumption (CSC), N2 consumption (N2C), and specific growth rate (µ). The experimental optimization of multiple responses presented a desirability of 76.8%, thus defining the independent variables of the process: temperature = 35.1 °C, pH = 5.0, and SS = 139.3 rpm; and the dependent variables: viability = 10.01 Log10 CFU mL-1, B Wc  = 2.9 g L-1, LA = 19.4 g mL-1, YBwc/ S  = 43.9 g biomass/g CSC, VP Wc = 0.49 g L-1 h - 1, VP LA = 3.2 g L-1 h-1, CSC = 17.2%, N2C = 63.6% and µ = 0.28 h-1. From these, viability, YBwc/S, CSC, N2C, and LA presented significant statistical differences, while the independent variable with the least important effect on the process was pH. Under optimal conditions of temperature, pH and SS; SFS favors the reproduction and viability of W. cibaria. This provides evidence of a sustainable alternative for the production of probiotics in the context of circular economy.

3.
Front Microbiol ; 12: 675002, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163450

RESUMO

The whole genome of Weissella cibaria strain UTNGt21O isolated from wild fruits of Solanum quitoense (naranjilla) shrub was sequenced and annotated. The similarity proportions based on the genus level, as a result of the best hits for the entire contig, were 54.84% with Weissella, 6.45% with Leuconostoc, 3.23% with Lactococcus, and 35.48% no match. The closest genome was W. cibaria SP7 (GCF_004521965.1) with 86.21% average nucleotide identity (ANI) and 3.2% alignment coverage. The genome contains 1,867 protein-coding genes, among which 1,620 were assigned with the EggNOG database. On the basis of the results, 438 proteins were classified with unknown function from which 247 new hypothetical proteins have no match in the nucleotide Basic Local Alignment Search Tool (BLASTN) database. It also contains 78 tRNAs, six copies of 5S rRNA, one copy of 16S rRNA, one copy of 23S rRNA, and one copy of tmRNA. The W. cibaria UTNGt21O strain harbors several genes responsible for carbohydrate metabolism, cellular process, general stress responses, cofactors, and vitamins, conferring probiotic features. A pangenome analysis indicated the presence of various strain-specific genes encoded for proteins responsible for the defense mechanisms as well as gene encoded for enzymes with biotechnological value, such as penicillin acylase and folates; thus, W. cibaria exhibited high genetic diversity. The genome characterization indicated the presence of a putative CRISPR-Cas array and five prophage regions and the absence of acquired antibiotic resistance genes, virulence, and pathogenic factors; thus, UTNGt21O might be considered a safe strain. Besides, the interaction between the peptide extracts from UTNGt21O and Staphylococcus aureus results in cell death caused by the target cell integrity loss and the release of aromatic molecules from the cytoplasm. The results indicated that W. cibaria UTNGt21O can be considered a beneficial strain to be further exploited for developing novel antimicrobials and probiotic products with improved technological characteristics.

4.
Foods ; 9(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899506

RESUMO

A novel Weissella cibaria strain UTNGt21O from the fruit of the Solanum quitoense (naranjilla) shrub produces a peptide that inhibits the growth of both Salmonella enterica subsp. enterica ATCC51741 and Escherichia coli ATCC25922 at different stages. A total of 31 contigs were assembled, with a total length of 1,924,087 bases, 20 contig hits match the core genome of different groups within Weissella, while for 11 contigs no match was found in the database. The GT content was 39.53% and the genome repeats sequences constitute around 186,760 bases of the assembly. The UTNGt21O matches the W. cibaria genome with 83% identity and no gaps (0). The sequencing data were deposited in the NCBI Database (BioProject accessions: PRJNA639289). The antibacterial activity and interaction mechanism of the peptide UTNGt21O on target bacteria were investigated by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with different concentrations (1×, 1.5× and 2× MIC) of the peptide applied alone or in combination with chelating agent ethylenediaminetetraacetic acid (EDTA) at 20 mM. The results indicated a bacteriolytic effect at both early and late target growth at 3 h of incubation and total cell death at 6 h when EDTA was co-inoculated with the peptide. Based on BAGEL 4 (Bacteriocin Genome Mining Tool) a putative bacteriocin having 33.4% sequence similarity to enterolysin A was detected within the contig 12. The interaction between the peptide UTNGt21O and the target strains caused permeability in a dose-, time- response manner, with Salmonella (3200 AU/mL) more susceptible than E. coli (6400 AU/mL). The results indicated that UTNGt21O may damage the integrity of the cell target, leading to release of cytoplasmic components followed by cell death. Differences in membrane shape changes in target cells treated with different doses of peptide were observed by transmission electronic microscopy (TEM). Spheroplasts with spherical shapes were detected in Salmonella while larger shaped spheroplasts with thicker and deformed membranes along with filamentous cells were observed in E. coli upon the treatment with the UTNGt21O peptide. These results indicate the promising potential of the putative bacteriocin released by the novel W. cibaria strain UTNGt21O to be further tested as a new antimicrobial substance.

5.
Probiotics Antimicrob Proteins ; 8(2): 111-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27084703

RESUMO

A teat bio-sealant was developed using Weissella cibaria, and the bio-sealant's technological and functional properties were assessed. The development included four experimental phases that were analyzed using independent experimental designs. Initially, sterilized or pasteurized Aloe vera gels were used, and the effect of heat treatment was investigated. In the second phase, the effects of time, storage temperature, and addition of cryopreservatives on the viability of the probiotic were observed. The third phase consisted of evaluating the synergistic effects of the cryopreservatives. The fourth phase involved selecting a material that would provide viscosity to the teat sealant. Technological and functional properties were measured in terms of viability of W. cibaria, and antimicrobial activity against Staphylococcus aureus and Streptococcus agalactiae was also analyzed. A mixture of milk powder and glycerol preserved this antimicrobial activity. Pullulan provided greater viscosity and maintained the technological and functional properties of the bio-sealant for 29 days. This teat bio-sealant can be used as an alternative for the prevention of bovine mastitis.


Assuntos
Indústria de Laticínios/métodos , Mastite Bovina/prevenção & controle , Infecções Estafilocócicas/veterinária , Animais , Antibacterianos/farmacologia , Bovinos , Feminino , Glândulas Mamárias Animais/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Streptococcus agalactiae/efeitos dos fármacos
6.
Braz. j. microbiol ; Braz. j. microbiol;41(4): 916-921, Oct.-Dec. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-595732

RESUMO

The objective of this study was to isolate, characterize, and identify lactic acid bacteria (LAB) from ripe mulberries collected in Taiwan. Ripe mulberry samples were collected at five mulberry farms, located in different counties of Taiwan. Eighty-eight acid-producing cultures were isolated from these samples, and isolates were divided into classes first by phenotype, then into groups by restriction fragment length polymorphism (RFLP) analysis and sequencing of 16S ribosomal DNA (rDNA). Phenotypic and biochemical characteristics led to identification of four bacterial groups (A to D). Weissella cibaria was the most abundant type of LAB distributed in four mulberry farms, and Lactobacillus plantarum was the most abundant LAB found in the remaining farm. Ten W. cibaria and one Lactococcus lactis subsp. lactis isolate produced bacteriocins against the indicator strain Lactobacillus sakei JCM 1157T. These results suggest that various LAB are distributed in ripe mulberries and W. cibaria was the most abundant LAB found in this study.

7.
Braz J Microbiol ; 41(4): 916-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031571

RESUMO

The objective of this study was to isolate, characterize, and identify lactic acid bacteria (LAB) from ripe mulberries collected in Taiwan. Ripe mulberry samples were collected at five mulberry farms, located in different counties of Taiwan. Eighty-eight acid-producing cultures were isolated from these samples, and isolates were divided into classes first by phenotype, then into groups by restriction fragment length polymorphism (RFLP) analysis and sequencing of 16S ribosomal DNA (rDNA). Phenotypic and biochemical characteristics led to identification of four bacterial groups (A to D). Weissella cibaria was the most abundant type of LAB distributed in four mulberry farms, and Lactobacillus plantarum was the most abundant LAB found in the remaining farm. Ten W. cibaria and one Lactococcus lactis subsp. lactis isolate produced bacteriocins against the indicator strain Lactobacillus sakei JCM 1157(T). These results suggest that various LAB are distributed in ripe mulberries and W. cibaria was the most abundant LAB found in this study.

8.
Artigo em Inglês | VETINDEX | ID: vti-444592

RESUMO

The objective of this study was to isolate, characterize, and identify lactic acid bacteria (LAB) from ripe mulberries collected in Taiwan. Ripe mulberry samples were collected at five mulberry farms, located in different counties of Taiwan. Eighty-eight acid-producing cultures were isolated from these samples, and isolates were divided into classes first by phenotype, then into groups by restriction fragment length polymorphism (RFLP) analysis and sequencing of 16S ribosomal DNA (rDNA). Phenotypic and biochemical characteristics led to identification of four bacterial groups (A to D). Weissella cibaria was the most abundant type of LAB distributed in four mulberry farms, and Lactobacillus plantarum was the most abundant LAB found in the remaining farm. Ten W. cibaria and one Lactococcus lactis subsp. lactis isolate produced bacteriocins against the indicator strain Lactobacillus sakei JCM 1157T. These results suggest that various LAB are distributed in ripe mulberries and W. cibaria was the most abundant LAB found in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA