Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
New Phytol ; 242(5): 1932-1943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641865

RESUMO

Large trees in plantations generally produce more wood per unit of resource use than small trees. Two processes may account for this pattern: greater photosynthetic resource use efficiency or greater partitioning of carbon to wood production. We estimated gross primary production (GPP) at the individual scale by combining transpiration with photosynthetic water-use efficiency of Eucalyptus trees. Aboveground production fluxes were estimated using allometric equations and modeled respiration; total belowground carbon fluxes (TBCF) were estimated by subtracting aboveground fluxes from GPP. Partitioning was estimated by dividing component fluxes by GPP. Dominant trees produced almost three times as much wood as suppressed trees. They used 25 ± 10% (mean ± SD) of their photosynthates for wood production, whereas suppressed trees only used 12 ± 2%. By contrast, dominant trees used 27 ± 19% of their photosynthate belowground, whereas suppressed trees used 58 ± 5%. Intermediate trees lay between these extremes. Photosynthetic water-use efficiency of dominant trees was c. 13% greater than the efficiency of suppressed trees. Suppressed trees used more than twice as much of their photosynthate belowground and less than half as much aboveground compared with dominant trees. Differences in carbon partitioning were much greater than differences in GPP or photosynthetic water-use efficiency.


Assuntos
Carbono , Eucalyptus , Fotossíntese , Árvores , Água , Madeira , Eucalyptus/fisiologia , Eucalyptus/metabolismo , Carbono/metabolismo , Árvores/fisiologia , Árvores/metabolismo , Água/metabolismo , Madeira/fisiologia , Transpiração Vegetal/fisiologia , Modelos Biológicos
2.
Plants (Basel) ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611558

RESUMO

In regions where water is a limited resource, lettuce production can be challenging. To address this, water management strategies like deficit irrigation are used to improve water-use efficiency in agriculture. Associating this strategy with silicon (Si) application could help maintain adequate levels of agricultural production even with limited water availability. Two lettuce crop cycles were conducted in a completely randomized design, with a factorial scheme (2 × 3), with three irrigation levels (60%, 80% and 100%) of crop evapotranspiration (ETc), and with and without Si application. To explore their combined effects, morphological, productive, physiological and nutritional parameters were evaluated in the crops. The results showed that deficit irrigation and Si application had a positive interaction: lettuce yield of the treatment with 80% ETc + Si was statistically similar to 100% ETc without Si in the first cycle, and the treatment with 60% ETc + Si was similar to 100% ETc without Si in the second cycle. Photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate and total chlorophyll content increased under water-stress conditions with Si application; in the first cycle, the treatment with 80% ETc + Si increased by 30.1%, 31.3%, 7.8%, 28.46% and 50.3% compared to the same treatment without Si, respectively. Si application in conditions of water deficit was also beneficial to obtain a cooler canopy temperature and leaves with higher relative water content. In conclusion, we found that Si applications attenuate water deficit effects and provide a strategy to ameliorate the yield and water productivity in lettuce crops, contributing to more sustainable practices in agriculture.

3.
Plant Cell Environ ; 47(5): 1865-1876, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334166

RESUMO

The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.


Assuntos
Dióxido de Carbono , Fotossíntese , Fotossíntese/fisiologia , Florestas , Transporte de Elétrons , Folhas de Planta
4.
J Plant Res ; 137(1): 49-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962735

RESUMO

Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.


Assuntos
Árvores , Água , Árvores/fisiologia , Secas , Clima Tropical , Florestas , Folhas de Planta/fisiologia
5.
Front Plant Sci ; 14: 1248044, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954988

RESUMO

Inoculation with Bacillus subtilis is a promising approach to increase plant yield and nutrient acquisition. In this context, this study aimed to estimate the B. subtilis concentration that increases yield, gas exchange, and nutrition of lettuce plants in a hydroponic system. The research was carried out in a greenhouse in Ilha Solteira, Brazil. A randomized block design with five replications was adopted. The treatments consisted of B. subtilis concentrations in nutrient solution [0 mL "non-inoculated", 7.8 × 103, 15.6 × 103, 31.2 × 103, and 62.4 × 103 colony forming units (CFU) mL-1 of nutrient solution]. There was an increase of 20% and 19% in number of leaves and 22% and 25% in shoot fresh mass with B. subtilis concentrations of 15.6 × 103 and 31.2 × 103 CFU mL-1 as compared to the non-inoculated plants, respectively. Also, B. subtilis concentration at 31.2 × 103 CFU mL-1 increased net photosynthesis rate by 95%, intercellular CO2 concentration by 30%, and water use efficiency by 67% as compared to the non-inoculated treatments. The concentration of 7.8 × 103 CFU mL-1 improved shoot accumulation of Ca, Mg, and S by 109%, 74%, and 69%, when compared with non-inoculated plants, respectively. Inoculation with B. subtilis at 15.6 × 103 CFU mL-1 provided the highest fresh leaves yield while inoculation at 15.6 × 103 and 31.2 × 103 CFU mL-1 increased shoot fresh mass and number of leaves. Concentrations of 7.8 × 103 and 15.6 × 103 increased shoot K accumulation. The concentrations of 7.8 × 103, 15.6 × 103, and 31.2 × 103 CFU mL-1 increased shoot N accumulation in hydroponic lettuce plants.

6.
Plants (Basel) ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005723

RESUMO

Water deficit significantly affects global crop growth and productivity, particularly in water-limited environments, such as upland rice cultivation, reducing grain yield. Plants activate various defense mechanisms during water deficit, involving numerous genes and complex metabolic pathways. Exploring homologous genes that are linked to enhanced drought tolerance through the use of genomic data from model organisms can aid in the functional validation of target species. We evaluated the upland rice OsCPK5 gene, an A. thaliana AtCPK6 homolog, by overexpressing it in the BRSMG Curinga cultivar. Transformants were assessed using a semi-automated phenotyping platform under two irrigation conditions: regular watering, and water deficit applied 79 days after seeding, lasting 14 days, followed by irrigation at 80% field capacity. The physiological data and leaf samples were collected at reproductive stages R3, R6, and R8. The genetically modified (GM) plants consistently exhibited higher OsCPK5 gene expression levels across stages, peaking during grain filling, and displayed reduced stomatal conductance and photosynthetic rate and increased water-use efficiency compared to non-GM (NGM) plants under drought. The GM plants also exhibited a higher filled grain percentage under both irrigation conditions. Their drought susceptibility index was 0.9 times lower than that of NGM plants, and they maintained a higher chlorophyll a/b index, indicating sustained photosynthesis. The NGM plants under water deficit exhibited more leaf senescence, while the OsCPK5-overexpressing plants retained their green leaves. Overall, OsCPK5 overexpression induced diverse drought tolerance mechanisms, indicating the potential for future development of more drought-tolerant rice cultivars.

7.
J Exp Bot ; 74(16): 4825-4846, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37490359

RESUMO

Adequate management of N supply, plant density, row spacing, and soil cover has proved useful for increasing grain yields and/or grain yield stability of rainfed crops over the years. We review the impact of these management practices on grain yield water-related determinants: seasonal crop evapotranspiration (ET) and water use efficiency for grain production per unit of evapotranspired water during the growing season (WUEG,ET,s). We highlight a large number of conflicting results for the impact of management on ET and expose the complexity of the ET response to environmental factors. We analyse the influence of management practices on WUEG,ET,s in terms of the three main processes controlling it: (i) the proportion of transpiration in ET (T/ET), (ii) transpiration efficiency for shoot biomass production (TEB), and (iii) the harvest index. We directly relate the impact of management practices on T/ET to their effect on crop light interception and provide evidence that management practices significantly influence TEB. To optimize WUEG,ET,s, management practices should favor soil water availability during critical periods for seed set, thereby improving the harvest index. The need to improve the performance of existing crop growth models for the prediction of water-related grain yield determinants under different management practices is also discussed.


Assuntos
Solo , Água , Água/fisiologia , Grão Comestível , Produtos Agrícolas , Sementes
8.
AoB Plants ; 15(3): plad018, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214224

RESUMO

Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.

9.
Front Plant Sci ; 14: 1182461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223790

RESUMO

Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.

10.
Ann Bot ; 131(6): 941-951, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996263

RESUMO

BACKGROUND AND AIMS: The vulnerability and responsiveness of forests to drought are immensely variable across biomes. Intraspecific tree responses to drought in species with wide niche breadths that grow across contrasting climatically environments might provide key information regarding forest resistance and changes in species distribution under climate change. Using a species with an exceptionally wide niche breath, we tested the hypothesis that tree populations thriving in dry environments are more resistant to drought than those growing in moist locations. METHODS: We determined temporal trends in tree radial growth of 12 tree populations of Nothofagus antarctica (Nothofagaceae) located across a sharp precipitation gradient (annual precipitation of 500-2000 mm) in Chile and Argentina. Using dendrochronological methods, we fitted generalized additive mixed-effect models to predict the annual basal area increment as a function of year and dryness (De Martonne aridity index). We also measured carbon and oxygen isotope signals (and estimated intrinsic water-use efficiency) to provide potential physiological causes for tree growth responses to drought. KEY RESULTS: We found unexpected improvements in growth during 1980-1998 in moist sites, while growth responses in dry sites were mixed. All populations, independent of site moisture, showed an increase in their intrinsic water-use efficiency in recent decades, a tendency that seemed to be explained by an increase in the photosynthetic rate instead of drought-induced stomatal closure, given that δ18O did not change with time. CONCLUSIONS: The absence of drought-induced negative effects on tree growth in a tree species with a wide niche breadth is promising because it might relate to the causal mechanisms tree species possess to face ongoing drought events. We suggest that the drought resistance of N. antarctica might be attributable to its low stature and relatively low growth rate.


Assuntos
Mudança Climática , Árvores , Árvores/fisiologia , Florestas , Carbono , Secas , Água
11.
Microorganisms ; 11(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838467

RESUMO

Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.

12.
Heliyon ; 9(1): e12755, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685469

RESUMO

It has been established that climate change has a direct impact on water availability, an essential resource for agricultural development. As a result, controlling, mitigating, and adapting to water deficit requires the advancement of research on promising wild flora species. As recent studies have shown, wild relatives of certain cultivars are tolerant to adverse factors, enabling the development of sustainable and resilient agriculture. The present study evaluated the morpho-physiology and productivity of tomato scions grafted on wild Solanaceae (Datura stramonium, Solanum sisymbriifolium, Solanum quitoense, and Cyphomandra betacea) grown under water deficit conditions (100% ETc - high level, 75% ETc - moderate level, 50% ETc - medium level, and 25% ETc - low level). The results showed that tomato plants grafted on Datura stramonium rootstocks performed better morpho-physiologically under deficit irrigation. The improved osmoregulation caused by a higher relative water content (98.49%) allowed the scion to be more tolerant to water stress. In addition, these scions showed high water potential during their phenological stages (vegetative -0.47 MPa, flowering -0.59 MPa, and production -0.64 MPa), as well as improved photosynthetic efficiency. The overall tolerance of the scion resulted in better yield (8.14 kg/plant) with higher number of commercially valuable fruits. The D. stramonium rootstock allowed better management and use of irrigation water, increasing productivity (54.95 kg/m3); that is, it is presented as a species with potential for establishing tomato production areas in scenarios of water scarcity or cultivation under deficit irrigation.

13.
Ciênc. rural (Online) ; 53(1): e20210836, 2023. tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1384551

RESUMO

ABSTRACT: This research evaluated the yield, water productivity, and economic water productivity for the oil content of three soybean cultivars under different water conditions. The experiments were conducted in the 2017/2018 and 2018/2019 harvests. The experimental design consisted of a two-factor randomized block, with the first factor of 5 irrigation depths, based on the reference evapotranspiration (ETO), plus the treatment without irrigation and the second factor was 3 soybean cultivars. Results reported oil yield and productivity were higher for the depths of 75% (crop 1) and 100% of ETO (crop 2). For the evaluations of water productivity and economic water productivity, the highest results were obtained at the level of 50% in crop 1 and 25% and 50% in crop 2. Cultivar BRASMAX Ponta had the highest values for oil production and BRASMAX Valente for oil yield, in both crops. In Crop 1, the BRASMAX Valente cultivar had the highest results in water productivity and economic water productivity, and in Crop 2, the BRASMAX Ponta cultivar had the highest values. Supplemental irrigation favored the increase in oil production and oil productivity. For a more efficient and economical use of water, it is necessary to use smaller irrigation depths.


RESUMO: O presente trabalho teve como objetivo avaliar o rendimento, produtividade da água e produtividade econômica da água para o teor de óleo de três cultivares de soja sob diferentes condições hídricas. Os experimentos foram conduzidos nas safras 2017/2018 e 2018/2019. O delineamento experimental constou de um bifatorial em blocos ao acaso, com o primeiro fator de cinco lâminas de irrigação, com base na evapotranspiração de referência (ETO), mais o tratamento sem irrigação e o segundo fator foram três cultivares de soja. Os resultados para o rendimento e produtividade de óleo foram maiores para as lâminas de 75% (safra 1) e 100% da ETO (safra 2). Nas avaliações de produtividade da água e produtividade econômica da água os maiores resultados foram obtidos na lâmina de 50% na safra 1 e 25% e 50% na safra 2. A cultivar BRASMAX Ponta apresentou os maiores valores para produção de óleo e a BRASMAX Valente para produtividade de óleo, em ambas as safras. Na safra 1, a BRASMAX Valente obteve os maiores resultados na produtividade de água e produtividade econômica da água e, na Safra 2, foi a BRASMAX Ponta que apresentou maiores valores. A irrigação suplementar favoreceu o incremento na produção de óleo e a produtividade de óleo. Para o uso mais eficiente e econômico da água é necessário a utilização de menores lâminas.

14.
Ciênc. rural (Online) ; 53(1): 1-8, 2023. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1410635

RESUMO

This research evaluated the yield, water productivity, and economic water productivity for the oil content of three soybean cultivars under different water conditions. The experiments were conducted in the 2017/2018 and 2018/2019 harvests. The experimental design consisted of a two-factor randomized block, with the first factor of 5 irrigation depths, based on the reference evapotranspiration (ETO), plus the treatment without irrigation and the second factor was 3 soybean cultivars. Results reported oil yield and productivity were higher for the depths of 75% (crop 1) and 100% of ETO (crop 2). For the evaluations of water productivity and economic water productivity, the highest results were obtained at the level of 50% in crop 1 and 25% and 50% in crop 2. Cultivar BRASMAX Ponta had the highest values for oil production and BRASMAX Valente for oil yield, in both crops. In Crop 1, the BRASMAX Valente cultivar had the highest results in water productivity and economic water productivity, and in Crop 2, the BRASMAX Ponta cultivar had the highest values. Supplemental irrigation favored the increase in oil production and oil productivity. For a more efficient and economical use of water, it is necessary to use smaller irrigation depths.


O presente trabalho teve como objetivo avaliar o rendimento, produtividade da água e produtividade econômica da água para o teor de óleo de três cultivares de soja sob diferentes condições hídricas. Os experimentos foram conduzidos nas safras 2017/2018 e 2018/2019. O delineamento experimental constou de um bifatorial em blocos ao acaso, com o primeiro fator de cinco lâminas de irrigação, com base na evapotranspiração de referência (ETO), mais o tratamento sem irrigação e o segundo fator foram três cultivares de soja. Os resultados para o rendimento e produtividade de óleo foram maiores para as lâminas de 75% (safra 1) e 100% da ETO (safra 2). Nas avaliações de produtividade da água e produtividade econômica da água os maiores resultados foram obtidos na lâmina de 50% na safra 1 e 25% e 50% na safra 2. A cultivar BRASMAX Ponta apresentou os maiores valores para produção de óleo e a BRASMAX Valente para produtividade de óleo, em ambas as safras. Na safra 1, a BRASMAX Valente obteve os maiores resultados na produtividade de água e produtividade econômica da água e, na Safra 2, foi a BRASMAX Ponta que apresentou maiores valores. A irrigação suplementar favoreceu o incremento na produção de óleo e a produtividade de óleo. Para o uso mais eficiente e econômico da água é necessário a utilização de menores lâminas.


Assuntos
Glycine max , Óleos , Água , Evapotranspiração
15.
Biosci. j. (Online) ; 39: e39053, 2023.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1555535

RESUMO

Comprehension of the bean responses of beans common under to water deficit is an important tool in agricultural planning, like sowing time, and deficit irrigation management strategies. The study aimed to understand the morpho-physiological responses and yield attributes of two common bean genotypes submitted to water stress at different phenological stages. The study was carried out in a greenhouse, in randomized block scheme with five repetitions. To achieve the objectives deficit irrigation of 25% of crop evapotranspiration was practiced during vegetative (DI-V), flowering (DI-F), and pod filling (DI-PF) stages. A non-deficit irrigated (NDI) and deficit irrigated through vegetative to pod filling stages (DI-VP) treatments were added for comparison. The following morphophysiological responses and yield attributes were evaluated: net assimilation of CO2, stomatal conductance, and leaf transpiration, chlorophyll index, number of trifoliate leaves, chlorophyll index, leaf area, number of grains per plant, number of grains per pod, number of pods per plant, the mass of thousand grains, harvest index, and water use efficiency. The beans genotype under DI-V exhibited acclimation, observed by the relative increment with NDI of 195%, 759%, and 231% of net assimilation of CO2, stomatal conductance, and leaf transpiration, respectively. Plants under treatment DI-PF experienced dis-stress and plastic responses as leaf losses and exhaustion of gas exchanges. Treatment DI-V received 11% less water than NDI and exhibited equal yield, resulting in higher water use efficiency. Yield attributes correlations indicated that yield penalty might be related to pods abortion, which not occurred to plants under DI-V.

16.
PeerJ ; 10: e14542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570005

RESUMO

Background: Agriculture is essential for food security. However, conventional agriculture alters the water and carbon cycle and soil properties. We investigated the effect of conventional management (CM) and sustainable management (SM) on the carbon and water cycle in crops of nopal (Np) and wheat (Wh). Methods: A micrometeorological eddy covariance tower was installed to measure water use through evapotranspiration (ET) and the net exchange of CO2 during the crop's development. Gross primary productivity (GPP), water use efficiency (WUE), and soil properties were obtained. Results: The results showed that both agricultural managements influenced the carbon flux of the ecosystem, with a lower GPP and Reco in the nopal field (1.85 and 0.99 mmol C m-2 s-1, respectively), compared to the wheat field (6.34 and 1.8 mmol C m-2 s-1, respectively). It was mainly attributed to the metabolic plant differences, phenological stages, and wheat biomass developed during the winter. On the other hand, the accumulated ET in the SM-Wh plots was lower than SM-Np. Therefore, the crops subjected to sustainable practices use water more efficiently with 1.42 and 1.03 g C m-3 H2O for nopal and wheat, respectively. In regard to soil properties, it was observed that tillage alters microbial activity affecting organic matter and carbon. It can be concluded that the differences in agricultural management for both crops altered the carbon and water cycle and soil quality. In addition, implementing good agricultural practices allows more efficient use of water by the plant, higher retention of water in the soil, and less ET.


Assuntos
Ecossistema , Água , Água/metabolismo , Carbono , Agricultura , Solo , Produtos Agrícolas/metabolismo , Triticum
17.
Oecologia ; 200(1-2): 183-197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152059

RESUMO

Soil hydrology, nutrient availability, and forest disturbance determine the variation of tropical tree species composition locally. However, most habitat filtering is explained by tree species' hydraulic traits along the hydrological gradient. We asked whether these patterns apply to lianas. At the community level, we investigated whether hydrological gradient, soil fertility, and forest disturbance explain liana species composition and whether liana species-environment relationships are mediated by leaf and stem wood functional traits. We sampled liana species composition in 18 1-ha plots across a 64 km2 landscape in Central Amazonia and measured eleven leaf and stem wood traits across 115 liana species in 2000 individuals. We correlated liana species composition, summarized using PCoA with the functional composition summarized using principal coordinate analysis (PCA), employing species mean values of traits at the plot level. We tested the relationship between ordination axes and environmental gradients. Liana species composition was highly correlated with functional composition. Taxonomic (PCoA) and functional (PCA) compositions were strongly associated with the hydrological gradient, with a slight influence from forest disturbance on functional composition. Species in valley areas had larger stomata size and higher proportions of self-supporting xylem than in plateaus. Liana species on plateaus invest more in fast-growing leaves (higher SLA), although they show a higher wood density. Our study reveals that lianas use different functional solutions in dealing with each end of the hydrological gradient and that the relationships among habitat preferences and traits explain lianas species distributions less directly than previously found in trees.


Assuntos
Hidrologia , Árvores , Florestas , Humanos , Solo , Clima Tropical , Xilema
18.
Front Plant Sci ; 13: 921469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968107

RESUMO

Low technological knowledge in production chains, global climate change, and misinformation are concrete threats to food security. In addition, these combined threats also trigger ecological instability in megadiverse areas of the world, especially in some cacao-producing countries in South America, where this crop plays an important socio-economic role, even being used to replace illicit crops. Accordingly, the use of agroforestry systems approaches has emerged as a good alternative to maintain productivity, add high-value commodities to producers, and provide important ecosystem services for sustainable agriculture. However, limitations associated with the competition for resources between the species composing the system, and the higher incidence of some diseases, have led many producers to abandon this strategy, opting for monoculture. In this review, we seek to gather the main information available in the literature, aiming to answer the question: what is the real scientific evidence that supports the benefits and harms of adopting agroforestry systems in cacao production? We seek to make critical scrutiny of the possible negative effects of certain associations of the agroforestry system with biotic and abiotic stress in cacao. Here, we review the possible competition for light and nutrients and discuss the main characteristics to be sought in cacao genotypes to optimize these inter-specific relationships. In addition, we review the research advances that show the behavior of the main cacao diseases (Witch's broom disease, frosty pod rot, black pod rot) in models of agroforestry systems contrasted with monoculture, as well as the optimization of agronomic practices to reduce some of these stresses. This compendium, therefore, sheds light on a major gap in establishing truly sustainable agriculture, which has been treated much more from the perspective of negative stigma than from the real technological advantages that can be combined to the benefit of a balanced ecosystem with generating income for farmers.

19.
Front Plant Sci ; 13: 870438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685018

RESUMO

Climate change effects are unbalanced in all regions and cultivars linked to the wine industry. However, the impact of extreme weather events, such as drought and rising global temperatures, highlight the potential vulnerability in plant productivity, phenology, and crop water requirements that affect quality and harvests. Among adaptative measures for grapevine cultivars in existing or new winegrowing areas, the use of tolerant rootstocks to abiotic stress has been regarded as a mid-term strategy to face emerging constrains. The aim of this study was to compare naturalized or autochthonous rootstocks influence over grapevine cultivar performance and to characterize their response to deficit irrigation conditions. Data was collected from Cabernet Sauvignon and Syrah grafted plants for over 3 growing seasons (2018-2021) from a hyper-arid experimental field in Vicuña, Chile. Morpho-physiological parameters were determined throughout seasons and combinations where significant effects from rootstocks, irrigation treatment, and cultivar were observed over An and gs, thus modifying CO2 assimilation and intrinsic Water Use Efficiency (WUEi). Primary productivity and yield were also modified by rootstock depending upon cultivar hydric behavior. Interestingly, cluster and berry traits were unaffected despite how water productivity and integral water stress were modulated by rootstock. In both cultivars, it was observed that trait responses varied according to the irrigation conditions, rootstocks, and their respective interactions, thus highlighting a relative influence of the rootstocks in the processes of adaptation to the water deficit. Moreover, harvest date and acidity were modified by deficit irrigation treatment, and rootstocks did not modify phenological stages. Adaptation of grapevines to expected lower water availability might be improved by using suitable tolerant rootstocks, and maturity index can be modified through irrigation management.

20.
Front Plant Sci ; 13: 894657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712594

RESUMO

Terminal drought stress affects more than half of the areas planted with common bean (Phaseolus vulgaris), the main food legume globally, generating severe yield losses. Phenotyping water deficit responses and water use are central strategies to develop improved terminal drought resilience. The exploration and exploitation of genetic diversity in breeding programs are gaining importance, with a particular interest in related species with great adaptation to biotic and abiotic factors. This is the case with tepary beans (Phaseolus acutifolius), a bean that evolved and was domesticated in arid conditions and is considered well adapted to drought and heat stress. Under greenhouse conditions, using one genotype of tepary beans (resistant to drought) and two of common beans (one resistant and one susceptible to terminal drought), we evaluated phenotypic differences in traits such as water use efficiency (WUE), transpiration efficiency, rate of photosynthesis, photosynthetic efficiency, stomatal density, stomatal index, stomatal size, and the threshold for transpiration decline under well-watered and terminal drought conditions. Our results indicate two different water use strategies in drought-resistant genotypes: one observed in common bean aimed at conserving soil water by closing stomata early, inhibiting stomatal development, and limiting growth; and the other observed in tepary bean, where prolonged stomatal opening and higher carbon fixation, combined with no changes in stomata distribution, lead to higher biomass accumulation. Strategies that contribute to drought adaptation combined with other traits, such as greater mobilization of photoassimilates to the formation of reproductive structures, confer bean drought resistance and are useful targets in breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA